

СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ СТАТИЧЕСКИЙ ОДНОФАЗНЫЙ Меркурий 150 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ РЭ 26.51.63.130-073-74537069-2023

Содержание

1 Требования безопасности	5
2 Назначение и модификации	
2.1 Назначение	
2.2 Модификации счетчиков	7
3 Метрологические характеристики	8
3.1 Основные метрологические характеристики	8
3.2 Характеристики измерения ПКЭ	
3.3 Характеристики ведения времени	11
4 Технические характеристики	11
4.1 Измеряемые параметры	
4.2 Основные технические характеристики	12
4.3 Характеристики интерфейсов и протоколов обмена	13
4.4 Характеристики надежности	
4.5 Характеристики безопасности	
4.6 Пломбирование	
4.7 Комплектность	
4.8 Маркировка	
4.9 Упаковка	
5 Устройство и работа	
5.1 Устройство счетчиков	
5.2 Журналы событий	
5.3 Хранение информации	
5.4 Обмен информацией	
5.5 Фиксация мгновенных значений	
5.6 Управление нагрузкой	
5.6.1 Управление отключением и подключением абонента	
5.6.2 Блокировка управления5.6.3 Локальное управление нагрузкой	
5.6.4 Ручное управление нагрузкой	
5.7 Защита от несанкционированного доступа	
5.8 Работа счетчика с интерфейсом GSM или NB-IoT	
5.8.1 Режимы передачи данных	
5.8.2 Инициативная передача данных модуля связи	
5.8.3 Инициативная передачи данных в соответствии с протоко	
СПОДЭС	
6 Использование по назначению	30
6.1 Требования безопасности	
6.2 Эксплуатационные ограничения	
6.3 Схемы подключения счетчиков	
6.4 Подготовка к работе	
6.4.1 Общие сведения	
6.4.2 Монтаж счетчика на опору линии электропередачи	31
6.4.3 Монтаж счетчика на плоскую поверхность	32
6.4.4 Монтаж антенны	33
6.4.5 Рекомендации по использованию SIM-карт	
6.4.6 Рекомендации по подключению интерфейсов	
6.4.7 Сетевой адрес и пароли доступа	
6.4.8 Заводские настройки	
6.5 Порядок работы	
6.5.1 Индикация и управление	37

6.5.2 Использование счетчиков с выносным дисплеем	42
6.5.3 Использование в составе системы учета	
6.5.4 Контроль работоспособности	
7 Поверка	
8 Техническое обслуживание	
9 Текущий ремонт	44
10 Транспортирование	45
11 Хранение	45
12 Правила и условия реализации и утилизации	45
Приложение А Габаритные чертежи	47
Приложение Б Схема подключений	49
Приложение В Заводские настройки счетчиков	50
Приложение Г Перечень кодов событий самодиагностики	51
Приложение Д Перечень параметров индикации	53

Настоящее руководство распространяется на счетчик электрической энергии статический однофазный Меркурий 150 (далее – счетчик).

Руководство содержит информацию о мерах безопасности, технических характеристиках, конструктивном исполнении, а также другие сведения, необходимые для надлежащей эксплуатации счетчика и его технического обслуживания.

Обозначения информационных знаков

Важная информация

Рекомендации, несоблюдение которых может привести к частичному нарушению работоспособности счетчика

Информация и требования безопасности

В связи с постоянным совершенствованием счетчиков, в конструкцию и метрологически незначимое (прикладное) программное обеспечение могут быть внесены изменения, не влияющие на технические и метрологические характеристики.

Если в формуляре на счетчик в разделе «Особые отметки» не приведено иное, счетчики поставляются с предприятия-изготовителя запрограммированными на тарифное расписание

г. Москва, время московское:

Время включения тарифа 1 – 07 ч 00 мин. Время включения тарифа 2 – 23 ч 00 мин.

Список сокращений и обозначений

CSD Circuit Switched Data (технология передачи данных для стандарта GSM) GSM Global System for Mobile Communications (стандарт цифровой связи с

разделением каналов)

G3PLC Международный стандарт PLC (G3-PLC Alliance)

LTE Long-Term Evolution (стандарт связи с увеличенной пропускной

способностью и скоростью передачи данных)

NB-IoT Narrow Band Internet of Things (стандарт связи для устройств телеметрии с

низкими объемами обмена данными)

PLC Power Line Communication (сеть передачи данных по силовым линиям)

PLC II PLC собственной разработки ООО «Инкотекс-СК» PLC PRIME Международный стандарт PLC (Prime Alliance)

RF Radio Frequency (радиочастота)

SDK Software Development Kit (комплект средств разработки)

UMTS Universal Mobile Telecommunications System (технология сотовой связи для

внедрения 3G)

UTP Unshielded Twisted Pair (неэкранированная витая пара)

XNB Extended Narrowband (протокол связи для обмена данными устройств на

больших территориях с минимальными затратами энергии)

АИИС КУЭ Автоматизированная информационно-измерительная система

коммерческого учета электроэнергии и мощности

АС Автоматизированная система ЖКИ Жидкокристаллический индикатор

ИВК Информационно-вычислительный комплекс

ПКЭ Параметры качества электроэнергии

ПО Программное обеспечение

СПОДЭС Спецификация протокола обмена данными электронных счетчиков, единый

открытый протокол обмена между электронными приборами учета и

Версия 03.2025 Лист 4 из 54

устройств удаленного сбора данных ТС Телесостояние

1 Требования безопасности

По безопасности эксплуатации счетчик соответствует требованиям ГОСТ IEC 61010-1-2014. По способу защиты человека от поражения электрическим током счетчик соответствует классу защиты II по ГОСТ 12.2.007.0-75.

Монтаж, демонтаж, вскрытие, установку служебных параметров, техническое обслуживание счетчика должны проводить специально уполномоченные организации и лица согласно действующим правилам по монтажу и запуску электроустановок. Потребителю электрической энергии (абоненту) категорически запрещается проводить такие работы самостоятельно.

При проведении работ по монтажу и обслуживанию счетчиков должны соблюдаться требования документов:

- «Правила устройства электроустановок»;
- «Правила технической эксплуатации электроустановок потребителей»;
- «Правила по охране труда при эксплуатации электроустановок».

К РАБОТАМ ПО МОНТАЖУ, ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ И РЕМОНТУ СЧЕТЧИКОВ ДОПУСКАЮТСЯ ЛИЦА, ПРОШЕДШИЕ ИНСТРУКТАЖ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ И ИМЕЮЩИЕ КВАЛИФИКАЦИОННУЮ ГРУППУ ПО ЭЛЕКТРОБЕЗОПАСНОСТИ НЕ НИЖЕ III ДО 1000 В.

ВНИМАНИЕ: ВСЕ РАБОТЫ, СВЯЗАННЫЕ С МОНТАЖОМ СЧЕТЧИКОВ, ДОЛЖНЫ ПРОИЗВОДИТЬСЯ ПРИ ОТКЛЮЧЕННОЙ СЕТИ.

ПРИ МОНТАЖЕ СЧЕТЧИКА ДЛЯ ОБЕСПЕЧЕНИЯ НАДЕЖНОГО КОНТАКТА СИЛОВОГО ПРОВОДА В КОЛОДКЕ, ПРЕДОТВРАЩЕНИЯ ОСЛАБЛЕНИЯ СОЕДИНЕНИЯ, ПРЕДОТВРАЩЕНИЯ НАГРЕВА И ПОСЛЕДУЮЩЕГО ВЫГОРАНИЯ КЛЕММ НЕОБХОДИМО:

ИСПОЛЬЗОВАТЬ ОБЖИМНЫЕ НАКОНЕЧНИКИ ТИПА НШВ 16-18;

ОБЕСПЕЧИТЬ МОМЕНТ ЗАТЯЖКИ ВИНТОВ СИЛОВЫХ ЗАЖИМОВ 2,5-3,0 Н·м;

ПОСЛЕ ЗАВЕРШЕНИЯ МОНТАЖА ПОВТОРНО ПОДТЯНУТЬ ВИНТЫ СОЕДИНЕНИЙ.

2 Назначение и модификации

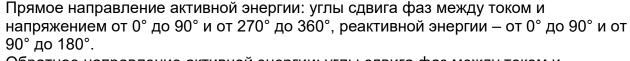
2.1 Назначение

Счетчик предназначен для многотарифного измерения активной и реактивной электрической энергии прямого и обратного направлений, активной, реактивной, полной электрической мощности, частоты, напряжения, силы переменного тока, параметров качества электроэнергии в однофазных двухпроводных электрических сетях переменного тока частотой 50 Гц.

Счетчик зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений Российской Федерации под № 89900-23. Сертификат об утверждении типа средств измерений № 89900-23.

Счетчик соответствует требованиям ТР ТС 004/2011 «Технический регламент безопасности оборудования» Таможенного союза «Ο низковольтного TP TC 020/2011 «Технический «Электромагнитная регламент Таможенного союза совместимость Сертификаты соответствия технических средств». ООО «Инкотекс-СК»:

• № EAЭC RU C-RU.ЯД01.В.00306/23 на счетчики Меркурий 150, Меркурий 150М,


Версия 03.2025 Лист 5 из 54

срок действия с 09.08.2023 по 08.08.2026;

• № EAЭC RU C-RU.ЯД01.В.00307/23 на счетчик Меркурий 150U, срок действия с 09.08.2023 по 08.08.2026.

Счетчик соответствует требованиям Постановления Правительства Российской Федерации от 19.06.2020 № 890 «О порядке предоставления доступа к минимальному набору функций интеллектуальных систем учета электрической энергии (мощности)» и может использоваться как автономно, так и в составе автоматизированной системы сбора данных.

Встроенное ПО счетчика внесено в российский реестр программного обеспечения, запись № 24791.

Обратное направление активной энергии: углы сдвига фаз между током и напряжением от 90° до 180° и от 180° до 270° , реактивной энергии – от 180° до 270° и от 270° до 360° .

Каналы учета счетчика приведены в таблице 2.1

Таблица 2.1 – Каналы учета счетчика

Наиманарания канала мната	Двунаправленный учет		
Наименование канала учета	С учетом знака	По модулю	
A+	A1+A4	A1+A2+A3+A4	
A-	A2+A3	0	
R+	R1+R2	R1+R3	
R-	R3+R4	R2+R4	

Примечания

- 1 A+ (R+) активная (реактивная) электрическая энергия прямого направления
- 2 A- (R-) активная (реактивная) электрическая энергия обратного направления
- 3 A1, A2, A3, A4 (R1, R2, R3, R4) активная (реактивная) составляющие вектора полной электрической энергии первого, второго, третьего и четвертого квадрантов соответственно
- 4 По каналам учета A+, A-, R+, R- возможно отображение учтенной электрической энергии на ЖКИ, ведение профилей мощности, формирование импульсов на испытательном выходе

Счетчики Меркурий 150М, Меркурий 150 предназначены для эксплуатации внутри помещений, а также могут быть использованы в местах, имеющих дополнительную защиту от влияния окружающей среды (установлены в помещении, в шкафу, в щитке), степень защиты от проникновения пыли и воды IP51 или IP54 (по специальному заказу) по ГОСТ 14254-2015.

Счетчик Меркурий 150U предназначен для эксплуатации внутри и снаружи помещений, в том числе с установкой на опоры линий электропередач, степень защиты от проникновения пыли и воды IP54 по ГОСТ 14254-2015.

Счетчики по способу подключения к электросети являются счетчиками непосредственного включения по току. Схема включения счетчика – однофазная двухпроводная.

Счетчики имеют в своем составе два датчика тока (фаза и нейтраль).

Счетчики обеспечивают регистрацию и хранение значений потребляемой электроэнергии не менее, чем по четырем тарифам и суммарно по всем тарифам с момента ввода счетчика в эксплуатацию. Переключение тарифов осуществляется с помощью внутреннего тарификатора. Характеристики тарификатора приведены в таблице 4.3.

В счетчиках Меркурий 150М, Меркурий 150, Меркурий 150Х для отображения значений измеряемых параметров и дополнительной информации используется ЖКИ, который дает показания в киловатт-часах (кВт·ч) при измерении активной энергии и в киловар-часах (квар·ч) при измерении реактивной энергии.

Счетчик Меркурий 150U не имеет встроенного дисплея и может комплектоваться

Версия 03.2025 Лист 6 из 54

выносным дисплеем для отображения измеряемых параметров.

Счетчик оснащен, как минимум, двумя интерфейсами для обмена данными: оптопорт – для локального доступа и интерфейс, используемый для удаленного доступа. Оптопорт счетчиков имеет механические и оптические характеристики по ГОСТ IEC 61107-2011.

2.2 Модификации счетчиков

Счетчик имеет модификации, отличающиеся базовым и максимальным током, а также конструкцией и функциональными возможностями, связанными с метрологически незначимым (прикладным) программным обеспечением.

Структура кода модификаций счетчика приведена в таблице 2.2.

Таблица 2.2 – Структура кода модификаций счетчика

Меркурий	150	M	U	X	2	-nn	DOKnHW	RLnGnesEFnC	. RLnGnesEFnCQn
									Тип сменного модуля
									R – интерфейс RS485
									Ln – PLC-модем, где n – стандарт/
									технология PLC связи (от 1 до 9)
									Gn – радиоинтерфейс, где n –
									стандарт/технология мобильной связи (от
									1 до 99)
									e – eSIM
									s – SIMchip формата MFF2
									E – Ethernet TX
									Fn – радиоинтерфейс RF, где n –
									стандарт/технология беспроводной связи
									(от 01 до 99)
									C – CAN
									Qn – многофункциональный модуль, где n
									– номер модификации (от 1 до 9)
								T	. разделитель кода
								Тип встроенного	
								R – интерфейс F	
									где n – стандарт/технология PLC связи (от 1
								до 9)	choŭo FRO n. OTOURONT/TOYUOROFIAG
								мобильной связі	фейс, где n – стандарт/технология
								e – eSIM	Т(ОТТДО 99)
								s – SIMchip форг	иата MFF2
								E – Ethernet TX	iara ivii i Z
									фейс RF, где n – стандарт/технология
									язи (от 01 до 99)
								C – CAN	men (et et de ee)
								альные возможно	сти
							D – проток	ол СПОДЭС/DLN	1S
									ле отключения нагрузки
									е входы/выходы, где n – номер модификации
							(от 1 до 9)		
									о элемента в цепи нейтрали
									сплея в комплекте поставки
									пряжения, класса точности по таблице 2.3
					2 –	двун	двунаправленный учет, при отсутствии цифры – однонаправленный учет		
	Х – улучшенный корпус								
							лнение		
							а для смен	ного модуля связ	И
	150	– ce	рия	СЧ	етчи	ка			
Торговая ма									

Примечания

- 1 Отсутствие буквы кода означает отсутствие соответствующей функции
- 2 При наличии выносного дисплея в комплекте поставки символ «W» отсутствует на корпусе счетчика, указывается в формуляре и на упаковке счетчика
- 3 В счетчиках с индексом «D» используется протокол передачи данных СПОДЭС на основе и в соответствии с IEC 62056 DLMS/COSEM с учетом требований стандарта ПАО «Россети» СПОДЭС версии 4

Версия 03.2025 Лист 7 из 54

СТО 34.01-5.1-006-2023 «Приборы учета электрической энергии. Требования к информационной модели обмена данными», далее – СПОДЭС

Модификации счетчиков, доступные для выбора и заказа, размещены в прайслисте на сайте предприятия-изготовителя.

Коды, базового/максимального тока, номинального напряжения, класса точности приведены в таблице 2.3.

Таблица 2.3 – Коды базового, максимального тока, номинального напряжения, постоянной счетчика, класса точности

	Базовый/	Номинальное	Постоянная счетчика в	Класс точности по
Код	максимальный	напряжение	режиме телеметрия/поверка,	активной/реактивной
	ток <i>Іб/Імакс</i> , А	<i>Uном</i> , В	имп./(кВт⋅ч) [имп./(квар⋅ч)]	энергии
-01	5/60	230	500 или 1000 / 32 000	1/2
-02	5/100	230	250 или 1000 / 16 000	1/2
-08	5/80	230	250 или 1000 / 16 000	1/2
-09	10/100	230	250 или 1000 / 16 000	1/2
Примечание – Значение постоянной счетчика 250, 500, 1000 определяется при заказе счетчика				

Коды модификаций интерфейсов приведены в таблице 2.4.

Таблица 2.4 – Коды модификаций интерфейсов

Обозначение	Тип	Модификация
Ln	PLC	L2 – PLCII
		L4 – PRIME
		L5 – G3PLC
Gn	GSM	G – GSM
		G1 – GSM/GPRS 2 SIM
		G3 – UMTS 3G
		G4 – LTE 4G
		G5 – NB-IoT
		G6 – GSM/GPRS 1 SIM
		G7 – NB-IoT/LTE/GPRS
Fn	RF	F03 – Zigbee
		F04 – LoRaWAN «Лартех»
		F05 – Hybrid G3-PLC & RF
		F06 – LPWAN «Aypa360»
		F07 – LoRaWAN «Вега-Абсолют»
		F08 – LoRaWAN «Комета»
		F09 – XNB
		F10 – LoRaWAN «OrionM2M»
Qn	Многофункциональный	Q1 – многофункциональный модуль

3 Метрологические характеристики

3.1 Основные метрологические характеристики

Счетчики удовлетворяют требованиям технических условий ТУ 26.51.63.130-073-74537069-2023, ГОСТ 12.2.007.0-75, ГОСТ IEC 61010-1-2014 в части требований безопасности, ГОСТ 22261-94, ГОСТ 31818.11-2012, ГОСТ 31819.23-2012 в части требований к счетчикам электрической энергии, ГОСТ 30804.4.30-2013 в части измерения ПКЭ, ГОСТ Р 58940-2020 в части требований к обмену информацией.

Пределы допускаемой основной погрешности измерений активной электрической энергии соответствуют классу точности 1 по ГОСТ 31819.21-2012.

Пределы допускаемой основной погрешности измерений реактивной электрической энергии соответствуют классу точности 2 по ГОСТ 31819.23-2012.

Диапазоны напряжения электропитания счетчиков соответствуют значениям приведенным в таблице 3.1.

Версия 03.2025 Лист 8 из 54

Таблица 3.1 – Диапазоны напряжения электропитания

Диапазон	Значение
Установленный рабочий диапазон	от 0,9 <i>Uном</i> до 1,1 <i>Uном</i>
Расширенный рабочий диапазон	от 0,7 <i>Uном</i> до 1,2 <i>Uном</i>
Предельный рабочий диапазон	от 0,0 до 1,2 <i>Uном</i>

Пределы допускаемой основной погрешности измерений токов фазы и нейтрали в нормальных условиях приведены в таблице 3.2.

Таблица 3.2 – Пределы основной погрешности измерения токов фазы и нейтрали

Класс точности счетчика	Диапазон токов	Предел погрешности
1	0,05×lб ≤ l < lб	$\delta i = \pm \left[1 + 0.01 \left(\frac{I6}{Ix} - 1 \right) \right]$
1	$Iб \le I \le Iмакс$	$\delta i = \pm \left[0.6 + 0.01 \left(\frac{I$ MAKC}{Ix} - 1\right)\right]

Пределы допускаемой основной погрешности измерений разности токов между фазой и нейтралью (небаланс токов) в нормальных условиях приведены в таблице 3.3.

Таблица 3.3 – Пределы основной погрешности измерений разности токов между фазой и нейтралью (небаланс токов)

Класс точности счетчика	Диапазон токов	Предел погрешности
1	0,15×lб ≤ l < lб	$\delta i = \pm \left[1 + 0.01 \left(\frac{I6}{Ix} - 1 \right) \right]$
1	Iб ≤ I ≤ Імакс	$\delta i = \pm \left[0.6 + 0.01 \left(\frac{I\textit{MAKC}}{Ix} - 1\right)\right]$

Пределы допускаемой основной погрешности измерений среднеквадратичного значения фазного напряжения в рабочем диапазоне температур и в диапазоне измеряемых напряжений от 0,7 до 1,2*Uном* соответствуют ±0,5 %.

Пределы допускаемой основной погрешности измерений частоты питающей сети в диапазоне от 45 до 55 Γ ц соответствуют $\pm 0,05$ Γ ц.

Средний температурный коэффициент при измерении активной электрической энергии и мощности в рабочем диапазоне температур не превышает значений, приведенных в таблице 3.4.

Таблица 3.4 – Средний температурный коэффициент при измерении активной электрической энергии и мощности

Значение тока для счетчиков с непосредственным включением	Коэффициент мощности	Средний температурный коэффициент, %/К, для счетчиков класса точности 1
0,1 <i>Iб</i> ≤ <i>I</i> ≤ <i>Iмакс</i>	1,0	0,05
0,2 <i>Iб</i> ≤ <i>I</i> ≤ <i>Iмакс</i>	0,5 (при индуктивной нагрузке)	0,07

Средний температурный коэффициент при измерении реактивной электрической энергии и мощности в рабочем диапазоне температур не превышает значений, приведенных в таблице 3.5.

Версия 03.2025 Лист 9 из 54

Таблица 3.5 – Средний температурный коэффициент при измерении реактивной энергии и мощности

Значение тока для счетчиков с непосредственным включением	Коэффициент sin φ (при индуктивной или емкостной нагрузке)	Средний температурный коэффициент, %/К, для счетчиков класса точности 2
0,10 <i>lб</i> ≤ <i>l</i> ≤ <i>lмакс</i>	1,0	0,10
0,20 <i>lб</i> ≤ <i>l</i> ≤ <i>lмакс</i>	0,5	0,15

Средний температурный коэффициент при измерении полной мощности, напряжения, силы тока в рабочем диапазоне температур не должен превышать значений, указанных в таблице 3.6.

Таблица 3.6 – Средний температурный коэффициент при измерении полной электрической мощности, напряжения, силы переменного тока

Значение тока для счетчиков с непосредственным включением	Средний температурный коэффициент, %/К, для счетчиков класса точности 1
0,1 <i>lб</i> ≤ <i>l</i> ≤ <i>lмакс</i>	0,1

Пределы допускаемой дополнительной погрешности при воздействии внешних факторов соответствуют требованиям ГОСТ 31818.11-2012, ГОСТ 31819.23-2012.

3.2 Характеристики измерения ПКЭ

Счетчик обеспечивает измерение ПКЭ по ГОСТ 30804.4.30, класс S, с формированием событий и индикацией факта нарушения на ЖКИ для следующих параметров:

- 1 отклонение основной частоты напряжения электропитания от номинального значения:
- 2 длительность отклонения частоты от номинального значения;
- 3 положительное, отрицательное, установившееся отклонение напряжения;
- 4 глубина провала напряжения;
- 5 длительность провала напряжения;
- 6 максимальное значение напряжения при перенапряжении;
- 7 длительность перенапряжения;
- 8 длительность прерывания напряжения;
- 9 коэффициент искажения синусоидальности напряжения.

Пределы допускаемой абсолютной погрешности измерений отклонения частоты переменного тока от номинального значения в диапазоне измерений от 42,5 до 57,5 Гц не превышают ±0,05 Гц.

Счетчик обеспечивает расчет суммарной продолжительности за расчетный период времени превышения отклонения частоты на величину более ±0,2 Гц и ±0,4 Гц.

Пределы допускаемой абсолютной погрешности измерений установившегося отклонения напряжения переменного тока в диапазоне от -80 % до +20 % от *Uном* не превышают $\pm 0,5$ % от *Uном*.

Пределы допускаемой погрешности измерений остаточного напряжения и максимального значения перенапряжения при измерении провала и перенапряжения не превышают ± 1 % от *Uhom*:

- пороговое значение провала напряжения от 0,1 до 0,9 *Uном*;
- пороговое значение перенапряжения не менее 1,2*Uном*;
- пороговое значение прерывания напряжения не более 0,1 *Uном*.

Пределы допускаемой абсолютной погрешности измерений глубины провала напряжения в диапазоне от 10 % до 90 % от *Uном* не превышают ±1 % от *Uном*.

Пределы допускаемой абсолютной погрешности измерений перенапряжения в диапазоне от 110 % до 150 % от *Uном* не превышают \pm 1 % от *Uном*.

Версия 03.2025 Лист 10 из 54

Пределы допускаемой абсолютной погрешности измерений длительности перенапряжения, провала, прерывания напряжения в диапазоне от 0.02 до 60 с не превышают ± 0.04 с.

Счетчик обеспечивает расчет суммарной продолжительности за расчетный период положительного или отрицательного отклонения уровня напряжения на величину более 10 % от *Uном* в интервале измерений, равном 10 минутам (параметр медленного изменения напряжения).

Счетчик обеспечивает расчет количества фактов положительного отклонения за расчетный период уровня напряжения на величину 20 % и более от *Uном* (параметр перенапряжения).

При измерении провала, прерывания, перенапряжения для каждого события в журнале событий фиксируются значение напряжения, дата и время перехода порогового значения.

При измерении отклонения частоты для каждого события в журнале событий фиксируются значение частоты, дата и время перехода порогового значения.

3.3 Характеристики ведения времени

Счетчики имеют встроенные часы реального времени с календарем.

Встроенные часы питаются как от электросети, так и от встроенной батареи и обеспечивают:

- функционирование как от напряжения питающей сети, так и от встроенной батареи при отсутствии питающей сети;
- ведение даты и времени независимо от наличия напряжения питающей сети;
- ручную (по внешней команде через интерфейсы связи) и автоматическую коррекцию (синхронизацию) времени;
- возможность автоматического переключения на зимнее/летнее время;
- непрерывный, без сбоев, отсчет текущего времени при пропадании основного питания и питание от дополнительного источника.

Точность хода часов при нормальной температуре (20 ±5) °C не хуже ±0,5 с/сут.

Точность хода часов в рабочем диапазоне температур не хуже ±5 с/сут.

Точность хода часов при отсутствии питающей сети не хуже ±5 с/сут.

Счетчики имеют возможность плавной коррекции времени встроенных часов в пределах ±4 мин для протокола Меркурий и ±15 мин для протокола СПОДЭС по команде от интерфейса связи без нарушения хронологии функционирования. Плавную коррекцию (сдвиг) времени рекомендуется выполнять в процессе эксплуатации счетчика.

Также в счетчиках имеется возможность прямой (принудительной) установки времени. Прямую установку времени рекомендуется выполнять перед началом ввода счетчика в эксплуатацию.

ВНИМАНИЕ: ПЕРЕД ПОДАЧЕЙ КОМАНДЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ РЕКОМЕНДУЕТСЯ СЧИТАТЬ И СОХРАНИТЬ ПРОФИЛИ МОЩНОСТИ.

ПОСЛЕ ПРОВЕДЕНИЯ ПРОЦЕДУРЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ ВПЕРЕД/НАЗАД СЛЕДУЕТ ВЫПОЛНИТЬ ИНИЦИАЛИЗАЦИЮ (ОЧИСТКУ) АРХИВНЫХ МАССИВОВ (СУТОЧНЫХ, МЕСЯЧНЫХ), ПРОФИЛЕЙ МОЩНОСТИ, МАКСИМУМОВ, А ТАКЖЕ ЖУРНАЛОВ (ДОСТУПНЫХ ДЛЯ ОЧИСТКИ).

4 Технические характеристики

4.1 Измеряемые параметры

Счетчики обеспечивают измерение и расчет параметров:

- 1 учтенная активная, реактивная энергия прямого и обратного направлений, в том числе по тарифам (не менее чем по четырем тарифным зонам), нарастающим итогом и на начало отчетных периодов, включая энергию потерь;
- 2 мгновенные (за один период частоты сети) и усредненные значения фазного напряжения;

Версия 03.2025 Лист 11 из 54

- 3 мгновенные (за один период частоты сети) и усредненные значения фазного тока и тока нейтрали:
- 4 расчет разности фазного тока и тока нейтрали (небаланс токов);
- 5 активная, реактивная, полная мощности;
- 6 коэффициент мощности;
- 7 соотношение реактивной и активной мощностей (коэффициент реактивной мощности tgф);
- 8 максимумы мощности;
- 9 частота питающей сети;
- 10 температура внутри корпуса (контрольный, метрологически ненормированный параметр);
- 11 ПКЭ, перечень по п. 3.2;
- 12 текущее время и дата;
- 13 время работы (наработка) счетчика.

Алгоритмы вычисления мгновенных и усредненных значений параметров, включая интервалы расчета и усреднения, соответствуют классу S по ГОСТ 30804.4.30-2013. Все вспомогательные параметры энергии, напряжения, тока, мощности, частоты, времени (например, значение небаланса токов, значение максимума мощности и т. п.) измеряются в соответствии с классом точности и нормированными в п. 3 метрологическими характеристиками.

4.2 Основные технические характеристики

Счетчики устойчивы к климатическим условиям в соответствии с таблицей 4.1.

Таблица 4.1 – Климатические условия

Вид требований	Допустимые значения	
Установленный рабочий диапазон температуры	от минус 45 до плюс 70 °C	
Предельный рабочий диапазон температуры	от минус 45 до плюс 70 °C	
Предельный диапазон температуры хранения и транспортирования	от минус 50 до плюс 70 °C	
Относительная влажность воздуха среднегодовая менее 75 %		
Относительная влажность воздуха 30-суточная, распределенная естественным образом в течение года	95 %	
Относительная влажность воздуха при транспортировании и не более 95 % при 3 кранении		
Атмосферное давление в рабочих условиях		
Атмосферное давление в условиях транспортирования и хранения	от 84 до 106,7 кПа (от 630 до 800 мм рт.ст.)	

Габаритные размеры счетчиков приведены в приложении А.

Масса счетчиков без сменного модуля связи, не более:

- 0,55 кг для счетчиков Меркурий 150М, Меркурий 150, Меркурий 150Х;
- 0,50 кг для счетчика Меркурий 150U.

Счетчики Меркурий 150М и Меркурий 150 устойчивы к проникновению пыли и воды в соответствии с требованиями ГОСТ 14254-2015 для степеней защиты IP51 или IP54 (по спецзаказу на сайте предприятия-изготовителя).

Счетчики Меркурий 150U устойчивы к проникновению пыли и воды в соответствии с требованиями ГОСТ 14254-2015 для степени защиты IP54.

По спецзаказу доступны модификации счетчиков с повышенной степенью защиты корпуса.

Постоянная счетчика указана в таблице 2.3.

Счетчик начинает нормально функционировать не позднее чем через 5 с после того, как к зажимам счетчика будет приложено номинальное напряжение.

Счетчик начинает и продолжает регистрировать показания при при значениях тока, приведенных в таблице Таблица 4.2.

Версия 03.2025 Лист 12 из 54

Таблица 4.2 – Стартовый ток

Тип электрической энергии	Класс точности	Стартовый ток (чувствительность), А
Активная	1	0,004 <i>l</i> 6
Реактивная	2	0,005 <i>lб</i>

Активная и полная потребляемая мощность в цепи напряжения счетчика при номинальном напряжении, номинальной частоте и нормальной температуре не превышают 2 Вт и 10 В.А соответственно.

При наличии модема, в том числе в сменном модуле связи (наличие одного из индексов Ln, Gn, E, Fn, Qn в коде модификаций счетчика), активная и полная мощность, потребляемая в цепи напряжения при номинальном напряжении, номинальной частоте и нормальной температуре не более 6 Вт и 30 В·А соответственно.

Счетчик имеет встроенный тарификатор. Тарификатор может использовать тарифное расписание Меркурий или СПОДЭС. Характеристики тарификатора приведены в таблице 4.3.

Таблица 4.3 – Характеристики тарификатора

Характеристика	Тарификатор Меркурий	Тарификатор СПОДЭС
Макс. число тарифов	4	8
Макс. число тарифных зон/сутки	16*	8
Макс. число спец. дней	30	32

^{*} Тарифная зона 1 начинается с 00.00 ч

Примечание – Время переключения тарифов в суточном профиле для всех тарифных расписаний кратно одной минуте

Полная мощность, потребляемая цепью тока при базовом токе, номинальной частоте и нормальной температуре не более 0,1 В·А.

Счетчики имеют встроенную (основную) батарею. Срок службы батареи составляет не менее 16 лет.

Замена встроенной (основной) батареи производится в условиях единого сервисного центра ООО «Инкотекс-СК».

Счетчики имеют оптический импульсный испытательный выход.

Испытательный выход функционирует как основной (функция телеметрии) или как поверочный при измерении активной и реактивной энергии. Переключение режима выхода осуществляется по команде через интерфейс связи.

Характеристики оптического импульсного испытательного выхода соответствуют ГОСТ 31818.11-2012.

Характеристики встроенного силового реле отключения нагрузки:

- максимальный ток реле при выполнении операции отключения/включения (без приваривания контактов реле) при активной нагрузке не менее *Iмакс*;
- коммутационная износостойкость контактов реле при активной нагрузке током *Імакс* (электрическая прочность) не менее 5000 циклов;
- механическая стойкость не менее 100 000 циклов включения/отключения.

Интерфейсы связи RS485 (индекс R в коде), GSM (Gn), радиоинтерфейс (Fn), Ethernet (E) являются вспомогательными цепями по ГОСТ 31818.11-2012 с рабочим напряжением ниже 40 В. Значения рабочего напряжения приведены в соответствующих стандартах на интерфейсы связи.

4.3 Характеристики интерфейсов и протоколов обмена

Счетчики поддерживают протокол обмена данными в соответствии со спецификацией ГОСТ Р 58940-2020 «Требования к протоколам обмена информацией между компонентами интеллектуальной системы учета и приборами учета» с учетом требований стандарта ПАО «Россети» СПОДЭС версии 4 СТО 34.01-5.1-006-2023 «Приборы учета электрической энергии. Требования к информационной модели обмена

Версия 03.2025 Лист 13 из 54

данными».

Счетчики обеспечивают обмен информацией с оборудованием вышестоящего уровня управления через встроенные интерфейсы связи (модемы). Модули связи имеют автономное питание (резервный накопитель энергии), мощность которого позволяет отправлять сообщения в случае отключения основного питания.

Счетчики содержат несколько независимых интерфейсов связи в соответствии с модификацией по таблице 2.2.

Скорость обмена при связи со счетчиком по цифровым интерфейсам:

- оптопорт 9600 бит/с;
- RS485 выбирается из стандартного ряда скоростей в диапазоне от 9 600 до 115 200 бит/с;
- Ethernet не менее 10 Мбит/с;
- GSM в соответствии со спецификацией 3GPP на применяемую технологию и возможностями, предоставляемыми оператором связи;
- PLC в соответствии со спецификацией PLC PRIME и G3PLC не менее 33 400 бит/с:
- RF не менее 2400 бит/с.

Счетчики с индексом «R» обеспечивают обмен данными по интерфейсу RS485. Технические характеристики интерфейса RS485 соответствуют спецификации EIA-485.

Счетчики с индексом «Ln» обеспечивают обмен данными по силовой сети (PLC), возможные модификации:

- L2, технология связи PLC II;
- L4, технология связи PLC PRIME;
- L5 технология связи G3PLC.

Технология связи PLC II является собственной разработкой ООО «Инкотекс-СК» и обеспечивает обмен данными на скорости до 1000 бит/с. Технология использует несколько узкополосных каналов с временным разделением в разрешенном частотном диапазоне CENELEC A и обеспечивает лучшую помехоустойчивость по сравнению с другими технологиями за счет снижения скорости передачи данных.

Технология связи PLC PRIME стандартизована в рамках альянса PRIME Alliance. В счетчиках используется реализация стандарта версии v.1.3.6 и v.1.4. Диапазон частот CENELEC A от 0 до 95 кГц, тип модуляции OFDM. Счетчики имеют требуемые сертификаты, информация о которых размещена, в том числе, на сайте www.prime-alliance.org.

Счетчики с индексом «L4» в части работы по PLC совместимы с любым оборудованием, использующим технологию PRIME.

Счетчики с индексом «Gn» обеспечивают обмен данными по интерфейсу GSM. Описание возможных модификаций приведено в таблице 4.4.

Таблица 4.4 – Модификации GSM-интерфейсов

Код	Режим работы	Кол-во SIM-карт	Режим передачи данных	Преимущества	Обновление ПО «по воздуху»
G	CSD* /GPRS	1	Запрос-ответ	Приоритетное предоставление трафика в режиме CSD	нет
G1	GPRS	2	Запрос-ответ*/ Инициативная	Автоматический выбор оператора в зависимости от качества связи и уровня сигнала, переключение при потере связи	да
G3	UMTS 3G	1	Запрос-ответ*/ Инициативная	Автоматический выбор оператора в зависимости от качества связи и уровня сигнала, переключение при	да

Версия 03.2025 Лист 14 из 54

				потере связи	
				Автоматический выбор	
			Запрос-ответ*/	оператора в зависимости от	
G4	LTE 4G	1	Инициативная	качества связи и уровня	да
			У ППИЦИАТИВНАЯ	сигнала, переключение при	
				потере связи	
G5	NB-IoT**	1	Инициативная*/	Минимальный трафик,	па
03	IND-IOT	1	Запрос-ответ	настраиваемые сценарии	да
G6	GPRS	1	Инициативная*/	Минимальный трафик,	ПО
Go	GFIXS	1	Запрос-ответ	настраиваемые сценарии	да
	NB-IoT/		Инициативная*/	Минимальный трафик,	
G7	LTE/	1	Запрос-ответ	настраиваемые сценарии	да
	GPRS		Janpoc-Orber	настраиваемые сценарии	

Примечание – Для соединения в режиме CSD требуется выполнить процедуру дозвона

Счетчики с индексом «E» обеспечивают обмен данными по интерфейсу Ethernet. Для обмена данными по интерфейсу Ethernet могут использоваться протоколы обмена Меркурий, СПОДЭС, а также протокол в соответствии с ГОСТ Р МЭК 60870-5-104-2006.

Технические характеристики интерфейса Ethernet соответствуют стандарту IEEE802.3u, интерфейс поддерживает автоматическое определение скорости 10/100 Мбит/с. Среда передачи данных – витая пара UTP Cat.5 (5e). Физический интерфейс – Fast Ethernet 10/100 Base TX.

Счетчики с индексом «Fn» обеспечивают обмен данными по радиоинтерфейсу. Возможные модификации, поддерживаемые инфраструктуры сетей связи и их основные характеристики приведены в таблице 4.5.

Таблица 4.5 –	Модификации	радиоинте	рфейсов
---------------	-------------	-----------	---------

Код	Технология связи	Тип сети	Диапазон частот	Скорость обмена
F03	Zigbee	«ТелеПозиционный Проект»	2400-2483,5 МГц	250 кбит/с
F04	LoRaWAN	«Лартех»	868,0-868,2 МГц или 868,7-869,2 МГц	от 293 до 9380 бит/с
F05	Hybrid G3-PLC & RF		868,0-868,2 МГц или 868,7-869,2 МГц	50 кбит/с
F06	LPWAN	«Aypa360»	868,7-869,2 МГц	не менее 10 кбит/с
F07	LoRaWAN	«Вега-Абсолют»	868,0-868,2 МГц или 868,7-869,2 МГц	от 293 до 9380 бит/с
F08	LoRaWAN	«Комета»	868,0-868,2 МГц или 868,7-869,2 МГц	от 293 до 9380 бит/с
F09	XNB	Открытый протокол	863-865 МГц или 868,0-868,2 МГц или 868,7-869,2 МГц или 874-875 МГц	от 50 до 10 000 бит/с
F10	LoRaWAN	«OrionM2M»	868,0-868,2 МГц или 868,7-869,2 МГц	не менее 10 кбит/с

Особенности счетчиков с индексом «Fn» в коде:

- выходная мощность не более максимально разрешенной на территории РФ для соответствующей частоты;
- спектральная плотность мощности соответствует требованиям для указанных диапазонов и условий эксплуатации;
- разъем для внешней антенны SMA-F (опционально);
- внутренняя антенна.

Версия 03.2025 Лист 15 из 54

^{*} Конфигурация по умолчанию

^{**} Разработчикам ПО верхнего уровня по запросу предоставляется протокол обмена и SDK клиентской части протокола в исходных кодах

4.4 Характеристики надежности

Счетчики обеспечивают непрерывную работу в течение срока службы, средний срок службы счетчиков – не менее 30 лет.

Средняя наработка на отказ – не менее 320 000 ч.

Срок хранения всех данных, параметров настройки и встроенного ПО в энергонезависимой памяти при отключенном питании – на весь срок службы счетчиков.

Техническая поддержка на встроенное ПО счетчика, узлов и ПО сменного модуля связи обеспечивается в течение всего срока службы.

4.5 Характеристики безопасности

По безопасности эксплуатации счетчики удовлетворяют требованиям ГОСТ IEC 61010-1-2014, ГОСТ 22261-94, ГОСТ 31818.11-2012, требованиям ТР ТС 004/2011 «Технический регламент Таможенного союза «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Технический регламент Таможенного союза «Электромагнитная совместимость технических средств».

По способу защиты человека от поражения электрическим током счетчики соответствуют классу защиты II по ГОСТ 12.2.007.0-75.

Сопротивление изоляции между корпусом и изолированными по постоянному току электрическими цепями счетчика при нормальных климатических условиях по ГОСТ 15150-69 не менее 20 МОм.

Изоляция между всеми цепями тока и напряжения, а также вспомогательными цепями с номинальным напряжением более 40 В, соединенными вместе, с одной стороны и «землей», с подключенными к ней вспомогательными цепями с номинальным напряжением менее 40 В с другой стороны, при закрытом корпусе и крышке зажимов выдерживает в течение 1 мин воздействие напряжения 4 кВ (среднеквадратическое значение) переменного тока частотой 50 Гц. «Землей» является металлическая проводящая фольга, охватывающая счетчик.

Изоляция между цепями, которые не предполагается соединять вместе во время работы (цепями интерфейсов в любых комбинациях) в нормальных условиях выдерживает в течение 1 мин воздействие напряжения 2 кВ (среднеквадратическое значение) переменного тока частотой 50 Гц.

4.6 Пломбирование

Корпуса счетчиков опломбированы проволочными пломбами предприятияизготовителя и организации, проводящей первичную поверку счетчиков. Знак поверки наносится давлением на навесную пломбу.

Корпус и крышка зажимов опломбированы таким образом, чтобы внутренние части счетчика стали доступными только после нарушения целостности пломб.

Конструкция счетчиков предусматривает установку пломб эксплуатирующей организацией.

Крышка отсека для сменного модуля связи счетчика без индекса «Gn» пломбируется на предприятии-изготовителе с целью контроля несанкционированного доступа к модулю связи. Данная пломба не является пломбой поверителя и может быть удалена эксплуатирующей организацией при необходимости.

После установки SIM-карты в GSM модуль счетчика с индексом «Gn» следует опломбировать крышку отсека для сменного модуля связи пломбой эксплуатирующей организации.

Общий вид счетчиков с указанием мест пломбирования приведены на рисунках 4.1, 4.2.

Версия 03.2025 Лист 16 из 54

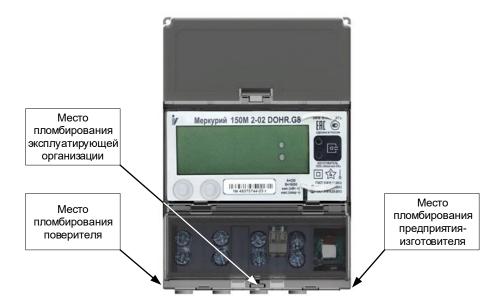


Рисунок 4.1 – Вид счетчиков Меркурий 150М, Меркурий 150, Меркурий 150X с указанием мест пломбирования

Рисунок 4.2 – Вид счетчика Меркурий 150U с указанием мест пломбирования

4.7 Комплектность

Комплектность счетчика приведена в таблице 4.6.

Таблица 4.6 – Комплектность

Наименование	Обозначение	Количество
Счетчик в потребительской таре	В соответствии с модификацией	1 шт.
Комплект гермовводов	В соответствии с модификацией	1 шт.
Выносной дисплей (при наличии в комплекте со счетчиком)	В соответствии с модификацией	1 шт.
Скоба для установки на опоре (поставляется только со счетчиками Меркурий 150U)	В соответствии с модификацией	1 шт.

Версия 03.2025 Лист 17 из 54

Программное обеспечение «Конфигуратор счетчиков Меркурий»	-	1 шт.
Программное обеспечение «Конфигуратор счетчиков СПОДЭС	_	1 шт.
Формуляр	ФО 26.51.63.130-073-74537069-2023	1 экз.
Руководство по эксплуатации*	P9 26.51.63.130-073-74537069-2023	1 экз.
Методика поверки**	MΠ 26.51.63.130-073-74537069-2023	1 экз.
Оптоадаптер «Меркурий 255.1»***	АВЛГ 699.00.00	1 шт.

^{*} Размещается в электронном виде на сайте <u>www.incotexcom.ru</u>

4.8 Маркировка

Маркировка счетчиков соответствует ГОСТ IEC 61010-1-2014, ГОСТ 22261-94, ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.23-2012, и документации предприятия-изготовителя.

На лицевую часть счетчиков Меркурий 150М и Меркурий 150 и на торцевую часть счетчиков Меркурий 150U нанесена маркировка:

- товарный знак предприятия-изготовителя;
- обозначение типа средств измерений;
- модификация счетчика;
- серийный номер по системе нумерации предприятия-изготовителя;
- год изготовления;
- номинальное напряжение;
- базовый и максимальный ток;
- номинальная частота в герцах;
- постоянная счетчика;
- обозначения ГОСТ 31818.11, ГОСТ 31819.21, ГОСТ 31819.23;
- обозначение класса точности по ГОСТ 8.401;
- знак 🖳 «Прибор II класса защиты» по ГОСТ 25372;
- знак 🛱 «Испытательное напряжение изоляции» по ГОСТ 23217;
- знак оподключения счетчиков к электросети по ГОСТ 25372;
- знак Оттический порт» по ГОСТ 25372;
- знак **EHI** обращения продукции на рынке государств евразийского экономического союза;
- надпись «Сделано в России»;
- QR код по ГОСТ Р ИСО/МЭК 18004-2015 со следующей информацией:
 - тип счетчика в соответствии с описанием типа;
 - полный серийный номер счетчика;
 - дата поверки.

На лицевую часть счетчиков Меркурий 150U нанесены лазерной гравировкой последние шесть цифр серийного номера для облегчения идентификации счетчика, высота цифр не менее 30 мм.

На крышке силовых зажимов имеется схема подключения счетчика к силовой сети с обозначением входных и входных контактов.

4.9 Упаковка

Упаковка счетчиков соответствует ГОСТ 22261-94, ГОСТ 23170-78, ОСТ 45.070.011 и документации предприятия-изготовителя.

Версия 03.2025 Лист 18 из 54

^{**} Размещается на сайте https://fgis.gost.ru

^{***} Поставляется по отдельному заказу организациям, производящим поверку счетчиков

5 Устройство и работа

5.1 Устройство счетчиков

Счетчики выполнены в пластиковом корпусе, не поддерживающем горение. Корпус счетчиков Меркурий 150М, Меркурий 150 предназначен для монтажа на DIN-рейку типа ТН35 по ГОСТ Р МЭК 60715-2003 или на панель (щит) с помощью переходного дополнительного крепления. Корпус счетчиков Меркурий 150U предназначен для монтажа на опору линии электропередач или иную поверхность с использованием скобы, входящей в комплект поставки.

Счетчики состоят из корпуса с крышками, колодки силовых зажимов и установленными внутри печатными платами с радиоэлементами. Крышка силовых зажимов выполнена из прозрачного пластика для контроля несанкционированного подключения к измерительным и интерфейсным цепям. Счетчики Меркурий 150М и Меркурий 150 имеют на лицевой панели две кнопки для управления режимами индикации.

В корпусе счетчиков с индексом «М» имеется отсек для размещения сменного модуля связи. Отсек закрывается крышкой с возможностью пломбировки. Для подключения внешней GSM антенны имеется разъем типа SMA-F.

Счетчики имеют светодиодный индикатор функционирования, являющийся одновременно индикатором импульсов учета электроэнергии.

Счетчики шкафного исполнения имеют с фронтальной стороны окно из прозрачного материала, через которое можно наблюдать за индикатором функционирования, считывать показания отсчетного устройства и иную информацию, отображаемую на ЖКИ. Окно ЖКИ обеспечивает невозможность его удаления без повреждения.

Счетчики сплит-исполнения могут быть укомплектованы выносным дисплеем для отображения информации.

Структура ПО счетчика разделена на метрологически значимую (измерительную) и метрологически незначимую (интерфейсную) части. Метрологически значимая часть встроенного ПО, калибровочные коэффициенты и измеренные данные защищены и недоступны для изменения без вскрытия корпуса. Измерительное ПО отделено от интерфейсного, располагается в отдельной области памяти и защищено от изменений контрольной суммой.

Счетчики обеспечивают возможность обновления метрологически незначимой (интерфейсной) части ПО без воздействия метрологически значимую (измерительную) часть. Обновление ПО составляющих И компонентов (встроенных интерфейсов связи, ПО сменного модуля GSM и т. д), происходит без потери накопленных данных (измеренных значений, журналов событий и т. п.) и без потери конфигурационных данных. В счетчиках обеспечена возможность дистанционного обновления ПО посредством удаленного доступа через цифровые интерфейсы связи в соответствии с действующей информационной моделью СПОДЭС.

Перезагрузка микропрограммного обеспечения счетчиков обеспечивается в следующих случаях:

- в автоматическом режиме после его обновления;
- по заданным алгоритмам для защиты от случайного зависания включая зависание модулей связи.

Основным узлом счетчиков является микроконтроллер. На вход микроконтроллера поступают электрические сигналы от датчиков тока и напряжения. Микроконтроллер выполняет расчет мгновенных и усредненных значений параметров сети, производит подсчет количества активной и реактивной электроэнергии по текущему тарифу, вычисление ПКЭ, анализ и формирование событий, формирование профилей мощности и архивов показаний на начало периодов и сохранение всей информации в энергонезависимой памяти.

Энергонезависимая память центрального микроконтроллера защищена от неконтролируемого изменения. В счетчике выполняется самодиагностика,

Версия 03.2025 Лист 19 из 54

обеспечивающая ежесуточное тестирование его блоков (памяти, часов, системы тактирования и т. д.), а также запись ошибок и информации о сбоях в журнал самодиагностики.

Измеренные и накопленные данные и события могут быть просмотрены на ЖКИ, а также переданы на верхний уровень управления по интерфейсам связи.

5.2 Журналы событий

Счетчики выполняют запись событий в выделенные сегменты энергонезависимой памяти (с указанием даты и времени) в соответствии с информационной моделью СПОДЭС при работе по протоколу СПОДЭС, а также при работе по протоколу Меркурий.

Счетчики поддерживают ведение журналов, где фиксируются и сохраняются следующие события:

- 1 дата и время вскрытия клеммной крышки;
- 2 дата и время вскрытия корпуса;
- 3 дата, время и причина включения и отключения встроенного коммутационного аппарата;
- 4 дата и время последнего перепрограммирования;
- 5 дата, время, тип и параметры выполненной команды;
- 6 попытка доступа с неуспешной идентификацией и (или) аутентификацией;
- 7 попытка доступа с нарушением правил управления доступом;
- 8 попытка несанкционированного обновления или записи программного обеспечения;
- 9 попытка несанкционированного нарушения измеренных параметров;
- 10 изменение направления перетока мощности;
- 11 дата и время воздействия постоянного или переменного магнитного поля со значением модуля вектора магнитной индукции свыше 150 мТл (пиковое значение);
- 12 факт связи с прибором учета электрической энергии, приведшей к изменению параметров конфигурации, режимов функционирования (в том числе введение полного и (или) частичного ограничения (возобновления) режима потребления электрической энергии (управление нагрузкой);
- 13 дата и время отклонения напряжения в измерительных цепях от заданных пределов:
- 14 отсутствие напряжения либо значение напряжения ниже запрограммированного порога с фиксацией времени пропадания и восстановления напряжения;
- 15 превышение соотношения величин потребления активной и реактивной мощности в соответствии с информационной моделью СПОДЭС;
- 16 небаланс фазного тока и тока нейтрали с фиксацией превышения значения порога небаланса и продолжительности отклонения;
- 17 превышение заданного предела мощности;
- 18 превышение тока выше установленного порога длительностью более 30 с;
- 19 достижение критически низкого уровня заряда батареи;
- 20 нарушение в подключении токовых цепей;
- 21 при отключенном реле нагрузки наличие напряжения на нагрузочной фазной клемме и также контроль наличия тока по всем измерительным цепям;
- 22 превышение заданного предела допустимой температуры внутри корпуса с конфигурируемым порогом;
- 23 изменение текущих значений времени и даты при синхронизации времени с фиксацией в журнале событий времени до и после коррекции или величины коррекции времени, на которую было скорректировано значение;
- 24 включение (отключение) измерительных цепей;
- 25 дата, время и продолжительность отклонения частоты ниже запрограммированного порога с фиксацией продолжительности отклонения;
- 26 при измерении провала, перенапряжения, прерывания напряжения для каждого

Версия 03.2025 Лист 20 из 54

- события в журнале событий фиксируется значение напряжения, дата и время перехода порогового значения;
- 27 в случае мгновенного отключения питания счетчика событие об аварийном режиме работы формируется и записывается в память, а также дата и время начала и окончания неисправности;
- 28 инициализация прибора учета, время последнего сброса, число сбросов нарастающим итогом;
- 29 результаты непрерывной самодиагностики (тестирования блоков счетчика), перечень ошибок самодиагностики приведен в приложении Г;
- 30 факт остановки часов при отсутствии питания и разряде батареи;
- 31 факт прерывания батарейного питания, а также разряда текущей эксплуатируемой батареи (возможно при следующем подключении к сети).

5.3 Хранение информации

Информация (измерительные данные, параметры настройки) в счетчике хранится в энергонезависимой памяти.

Срок хранения результатов измерений и журналов событий в энергонезависимой памяти – не менее 10 лет. Срок хранения параметров настройки и встроенного ПО – на весь срок службы счетчиков.

В счетчике реализован контроль целостности информации в энергонезависимой памяти.

Счетчик обеспечивает хранение в энергонезависимой памяти следующей информации:

- 1 профиль нагрузки (приращение активной и реактивной энергии) прямого и обратного направлений с программируемым интервалом времени интегрирования 3, 5, 10, 15, 20, 30, 60 минут с циклической перезаписью, начиная с самого раннего значения. Глубина хранения данных не менее 90 суток для 30-ти минутных и не менее 180 суток для 60-ти минутных интервалов;
- 2 значения учтенной активной и реактивной энергии нарастающим итогом суммарно и раздельно по тарифам, фиксированных на начало каждых суток (00 часов 00 минут 00 секунд) энергии прямого и обратного направлений с циклической перезаписью, начиная с самого раннего значения. Глубина хранения данных не менее 123 суток;
- 3 значения активной и реактивной энергии нарастающим итогом прямого и обратного направлений, а также запрограммированных параметров: на начало запрограммированного расчетного периода (на 00 часов 00 минут 00 секунд первых суток, следующих за последним расчетным периодом) и не менее 36 программируемых расчетных периодов (на 00 часов 00 минут 00 секунд первых суток, следующих за последним расчетным периодом) с циклической перезаписью начиная с самого раннего значения;
- 4 измерительные данные, параметры настройки, встроенное ПО;
- 5 журналы событий;
- 6 счетчики внешних воздействий нарастающим итогом:
 - счетчик коррекций (конфигурирований);
 - счетчик вскрытий корпуса;
 - счетчик вскрытий клеммной крышки;
 - счетчик срабатываний датчика магнитного поля;
 - счетчик срабатываний реле на размыкание;
 - счетчик сбросов.
- 7 иные параметры в соответствии с протоколом СПОДЭС.

На заводе-изготовителе устанавливаются интервалы интегрирования основного и дополнительного профилей 60 минут.

Версия 03.2025 Лист 21 из 54

!

ВНИМАНИЕ! ИНДИКАЦИЯ УЧТЕННОЙ ЭНЕРГИИ НА ЖКИ ПРОИЗВОДИТСЯ <u>ЗА</u> <u>ПРЕДЫДУЩИЕ ПЕРИОДЫ</u> В ВИДЕ РАСХОДОВ ЗА СУТКИ (МЕСЯЦ, ГОД).

ПЕРЕДАЧА ДАННЫХ ПО ИНТЕРФЕЙСАМ ПРОИЗВОДИТСЯ <u>НА НАЧАЛО</u> <u>КАЛЕНДАРНОГО ПЕРИОДА</u> В ВИДЕ ПОКАЗАНИЙ НА НАЧАЛО СУТОК (МЕСЯЦА, ГОДА).

ПЕРЕД ПОДАЧЕЙ КОМАНДЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ РЕКОМЕНДУЕТСЯ ПРОВОДИТЬ ПОЛНОЕ ЧТЕНИЕ И СОХРАНЕНИЕ ПРОФИЛЕЙ МОЩНОСТИ.

!

ВНИМАНИЕ: ПОСЛЕ ПРОВЕДЕНИЯ ПРОЦЕДУРЫ ПРЯМОЙ УСТАНОВКИ ВРЕМЕНИ ВПЕРЕД/НАЗАД СЛЕДУЕТ ВЫПОЛНИТЬ ИНИЦИАЛИЗАЦИЮ (ОЧИСТКУ) АРХИВНЫХ МАССИВОВ (СУТОЧНЫХ, МЕСЯЧНЫХ), ПРОФИЛЕЙ МОЩНОСТИ, МАКСИМУМОВ, А ТАКЖЕ ЖУРНАЛОВ (ДОСТУПНЫХ ДЛЯ ОЧИСТКИ).

5.4 Обмен информацией

Счетчик обеспечивает обмен информацией с оборудованием вышестоящего уровня управления через встроенный интерфейс связи (модем).

Счетчик содержит от 2 до 4 независимых интерфейсов связи в соответствии с модификацией по таблице 2.2.

Обмен данными по всем интерфейсам может производиться одновременно и независимо друг от друга, включая оптопорт.

Обмен данными по интерфейсам связи осуществляется по протоколу СПОДЭС, а также по протоколу Меркурий. Счетчик совместим с ПО ИВК «Пирамида 2.0» и «Пирамида-сети».

Счетчик имеет идентификатор производителя «INC», зарегистрированный в ассоциации DLMS UA.

Счетчик обеспечивает разграничение уровней доступа на программном уровне с помощью системы паролей:

- при работе по протоколу СПОДЭС в соответствии со спецификацией протокола;
- при работе по протоколу Меркурий:
 - 1 уровень доступа для считывания данных;
 - 2 уровень доступа для конфигурирования.

Счетчик обеспечивает при передаче команд по интерфейсам возможность программирования и изменения по интерфейсам параметров в соответствии со спецификацией, в том числе уровнем доступа, протокола СПОДЭС:

- 1 параметры фиксации ПКЭ:
- 2 состав и последовательность вывода отображаемой информации и измеряемых параметров на встроенный или выносной дисплей;
- 3 дата начала расчетного периода;
- 4 параметры срабатывания встроенного силового реле:
- 5 пароли доступа к параметрам;
- 6 ПО счетчика (кроме метрологически значимой части);
- 7 ПО интерфейсов (модулей) связи, входящих в состав счетчика;
- 8 параметры управления встроенным коммутационным аппаратом (реле);
- 9 параметры обмена по интерфейсу;
- 10 индивидуальные параметры счетчика;
- 11 текущие время и дата;
- 12 тарифное расписание:
- 13 параметры перехода сезонного времени;
- 14 часовой пояс;
- 15 параметры ведения профилей мощности;

Версия 03.2025 Лист 22 из 54

- 16 режимы индикации;
- 17 параметры контроля за превышением установленных лимитов активной мощности и энергии;
- 18 инициализация регистров накопленной энергии;
- 19 перезапуск счетчика («горячий» сброс) без выключения питания сети;
- 20 расписание контроля за утренними и вечерними максимумами мощности.

Счетчик имеет возможность программирования и изменения по интерфейсам следующих параметров по протоколу Меркурий, в скобках указан уровень доступа:

- 1 параметры обмена по интерфейсу (1, 2);
- 2 смена паролей первого (потребителя энергии) и второго (продавца энергии) уровня доступа к данным (1, 2);
- 3 индивидуальные параметры счетчика (2);
- 4 текущее время и дата (2);
- 5 тарифное расписание (2);
- 6 параметры перехода сезонного времени (2);
- 7 параметры ведения профилей мощности (2);
- 8 режимы индикации (1, 2);
- 9 параметры контроля за превышением установленных лимитов активной мощности и энергии (2);
- 10 инициализация регистров накопленной энергии (2);
- 11 перезапуск счетчика («горячий» сброс) без выключения питания сети (2);
- 12 параметры фиксации ПКЭ (2);
- 13 расписание контроля за утренними и вечерними максимумами мощности (2).

Счетчик обеспечивает чтение по интерфейсам в соответствии с уровнем доступа:

- Публичный клиент: чтение объекта «Часы», объекта «Логическое имя устройства» (в зависимости от категории счетчика);
- Считыватель показаний: все объекты в соответствии с информационной моделью СПОДЭС;
- Конфигуратор: все объекты в соответствии с информационной моделью СПОДЭС.

Счетчик обеспечивает чтение по интерфейсам следующих параметров по протоколу Меркурий для всех уровней доступа:

- 1 учтенная активная и реактивная энергия потребления и отдачи, в том числе по тарифам, нарастающим итогом и на начало отчетных периодов;
- 2 мгновенные и усредненные значения измеряемых параметров;
- 3 текущее время и параметры встроенных часов счетчика;
- 4 параметры тарификатора;
- 5 параметры ведения профиля мощности;
- 6 индивидуальные параметры счетчика;
- 7 режимы индикации;
- 8 параметры контроля лимитов активной энергии и мощности;
- 9 журналы событий;
- 10 журнал перепрограммирования (включая изменение конфигурационных параметров);
- 11 журналы ПКЭ;
- 12 значения максимумов мощности, при поддержке функционала;
- 13 слово состояния и данные самодиагностики счетчика.

Счетчик может быть запрограммирован на инициативную передачу служебной и технологической информации по последовательному интерфейсу.

Обязательное формирование и отправка инициативных сообщений выполняется при наличии доступа к каналу связи и наступлении следующих событий:

• отсутствие напряжения, либо значение напряжения ниже запрограммированного порога;

Версия 03.2025 Лист 23 из 54

• срабатывание электронной пломбы корпуса.

В случае отключения питания (отсутствия напряжения) соответствующее событие записывается в память счетчика. Счетчик со сменным модулем связи передает push-сообщение в модуль связи с указанием даты и времени начала события в момент отключения питания (пропадания напряжения).

5.5 Фиксация мгновенных значений

В счетчике предусмотрена фиксация следующих внутренних данных и параметров по адресному/широковещательному запросу (функция «стоп-кадр»):

- 1 время и дата фиксации;
- 2 активная энергия потребления и отдачи;
- 3 реактивная энергия потребления и отдачи;
- 4 активная мощность;
- 5 реактивная мощность;
- 6 полная мощность;
- 7 напряжение;
- 8 ток по фазе и нейтрали;
- 9 коэффициент мощности;
- 10 частота сети;
- 11 удельная энергия потерь в цепях тока;
- 12 удельная энергия потерь в силовых трансформаторах.

Также доступно считывание зафиксированных данных по интерфейсам.

5.6 Управление нагрузкой

5.6.1 Управление отключением и подключением абонента

Счетчики обеспечивают управление нагрузкой с помощью встроенного силового реле.

В счетчиках сплит-исполнения перевод телеметрии (оптический выход/светодиод) в режим «Управление нагрузкой» невозможен, для управления нагрузкой может использоваться только встроенное реле.

Управление нагрузкой осуществляется в соответствии с информационной моделью СПОДЭС.

Отключение и подключение абонента может быть выполнено:

- дистанционно через коммутационный интерфейс (дистанционное отключение реле, включение реле только после разрешения оператора системы);
- вручную с помощью кнопок на передней панели счетчика или выносного дисплея;
- локально на уровне функций счетчика по заранее запрограммированным событиям или заранее запрограммированным ограничителям, предназначенным для отключения потребителя при превышении заданных пороговых значений.

Класс ограничителей поддерживается во всех счетчиках независимо от наличия встроенного реле.

Реле может находиться в следующих состояниях:

- Отключено (0), потребитель отключен;
- Подключено (1), потребитель подключен;
- Разрешено включение (2), потребитель отключен.

Отключенное состояние реле (0, 2) подтверждается оценкой значения напряжения на стороне нагрузки. Состояние реле отображается на ЖКИ счетчика (выносного дисплея). Количество циклов включения/отключения реле нарастающим итогом фиксируется в отдельном регистре памяти счетчика.

Для управления нагрузкой предусмотрено семь режимов, каждый из которых характеризуется определенными разрешениями/запрещениями выполнения переходов

Версия 03.2025 Лист 24 из 54

между состояниями реле. После выбора режима и записи номера режима в память счетчика управление нагрузкой осуществляется по правилам, установленным для выбранного режима.

Подробнее о возможностях управления нагрузкой – см. «Конфигуратор СПОДЭС. Руководство пользователя» на сайте https://www.incotexcom.ru/support/docs/manual

5.6.2 Блокировка управления

Счетчики имеют переключатель блокировки управления нагрузкой. При выпуске из производства переключатель блокировки установлен в положение «Отключен», если в разделе «Особые отметки» формуляра не указано иное. Переключатель находится в опломбированной части счетчика под крышкой силовых зажимов (рисунок 5.1).

Рисунок 5.1 – Расположение переключателя блокировки управления нагрузкой счетчиков Меркурий 150М, Меркурий 150, Меркурий 150Х (слева) и Меркурий 150U (справа)

Для блокировки управления нагрузкой следует установить переключатель в положение «ON» (все контактные группы) и установить режим управления нагрузкой «0»,, при котором запрещены какие-либо переходы между состояниями реле, с помощью ПО «Конфигуратор СПОДЭС» в разделе управления нагрузкой.

Для разрешения управления нагрузкой следует установить переключатель в исходное положение и программно изменить режим управления «0» на требуемый.

Для объектов энергоснабжения с критически важным постоянным присутствием сети, например, обогрев частного дома электричеством, использование критически важного медицинского оборудования, рекомендуется установить переключатель блокировки в положение «ON» (все контактные группы).

5.6.3 Локальное управление нагрузкой

Установка параметров локального управления выполняется в разделе управления нагрузкой «Конфигуратора СПОДЭС» для параметров:

- контролируемая величина;
- нормальный и аварийный пороги;
- задержка перед автоматическим отключением реле (за исключением случая, когда в качестве контролируемой величины выбрано состояние электронных пломб);
- интервал времени до попытки автовключения;

Версия 03.2025 Лист 25 из 54

• состояние реле после превышения порога контролируемой величиной и снижения ниже порога, что позволяет задействовать тот или иной вид ограничителя при управлении нагрузкой.

Конфигурирование автовключения осуществляется только в режимах управления нагрузкой «5» и «6».

Если превышены пороговые значения контролируемых величин, выполняется автоматическое отключение: реле переводится из состояния Подключено (1) в состояние Разрешено включение (2).

При возникновении событий «Воздействие магнитного поля», «Вскрытие клеммной и приборной крышек» устанавливается состояние реле Отключено (0). Автовключение не предусмотрено.

После закрытия крышек или устранения воздействия магнитного поля, устанавливается состояние реле Разрешено включение (2), при котором возможно включение реле по интерфейсу связи или в ручном режиме.

После локального отключения нагрузки счетчиком автоматически устанавливается значение количества попыток автовключения (по умолчанию 1). Повторное включение реле выполняется по истечении заданного времени после отключения (по умолчанию 1 минута).

При автовключении выполняется переход реле из состояния 2 в состояние 1. Автовключение может выполняться для следующих ограничителей:

- «Превышение лимита мощности»;
- «Превышение максимального тока»;
- «Превышение максимального напряжения»;
- «Превышение дифференциального тока»;
- «Превышение температуры».

Функция автовключения не предусмотрена для следующих ограничителей:

- «Воздействие магнитного поля»;
- «Вскрытие клеммной и приборной крышек»;
- «Превышение лимита энергии» по тарифам.

ВНИМАНИЕ: Счетчики со встроенным силовым реле имеют защитную функцию отключения нагрузки при превышении максимального тока в любой из фаз.

Защитная функция отключения нагрузки при превышении максимального тока может быть отключена при конфигурировании, однако предприятие-изготовитель не рекомендует отключать защиту во избежание перегрева счетчика и не несет ответственности за возможные неисправности в случае перегрева счетчика при отключении защиты.

Запрещается использовать защитную функцию отключения нагрузки в счетчике в качестве функции вводного автоматического выключателя нагрузки.

Счетчики с максимальным током 60 A автоматически отключают нагрузку при токе 63 A, счетчики с максимальным током 100 A — при токе 106 A. Повторное включение возможно как дистанционно подачей команды по любому из интерфейсов, так и кнопками на лицевой панели счетчика.

Если автовключение нагрузки не выполнено, для включения нагрузки необходимо:

- 1 Устранить все причины, запрещающие включение (например, снизить потребляемую мощность или увеличить лимиты мощности и/или энергии).
- 2 Подать команду на включение нагрузки по интерфейсу связи.

5.6.4 Ручное управление нагрузкой

Если ручное включение/отключение реле разрешено для установленного режима управления нагрузкой, то для ручного включения/отключения реле следует одновременно

Версия 03.2025 Лист 26 из 54

нажать и удерживать обе кнопки счетчика (выносного дисплея) более 3 с.

После ручного отключения нагрузки с помощью кнопок автовключение отменяется: программно устанавливается количество попыток 0 для автовключения.

5.7 Защита от несанкционированного доступа

Конструкция счетчиков предусматривает установку проволочных пломб визуального контроля вскрытия.

Корпус счетчиков, крышка силовых зажимов, крышки всех отсеков (для установки сменного модуля связи, дополнительного элемента питания, доступа к переключателю блокировки реле и т. п.) оборудованы датчиками несанкционированного доступа (электронными пломбами), срабатывающими, в том числе, при отсутствии сетевого питания. Принцип действия электронных пломб обеспечивает их гарантированное срабатывание и немедленную фиксацию событий с указанием времени.

Средства защиты информации счетчика реализовывают функции безопасности в рамках информационной модели СПОДЭС.

Счетчики обеспечивают защиту от несанкционированного доступа к изменению:

- данных;
- параметров настройки;
- журналов событий;
- загруженных программ.

Счетчики оснащены энергонезависимыми электронными пломбами вскрытия/закрытия:

- корпуса;
- крышки силовых зажимов;
- крышки отсека для сменного модуля связи.

Срабатывание электронных пломб фиксируется в журнале событий и отображается на ЖКИ.

Счетчики имеют неразъемный корпус, попытки вскрытия корпуса приводят к визуальному нарушению целостности защитных элементов корпуса.

Защита счетчика от несанкционированного доступа на программном уровне осуществляется с помощью реализации:

- идентификации и аутентификации (в т. ч. установка паролей);
- контроля доступа;
- контроля целостности;
- регистрации событий безопасности (в т. ч. при отключенном питании сети) в нестираемом журнале событий в энергонезависимой памяти (с указанием даты и времени).

Счетчики обнаруживают воздействие постоянного и переменного магнитного поля со значением модуля вектора магнитной индукции 150 мТл и более. Начало и окончание воздействия фиксируется в журнале событий, факт воздействия отображается на ЖКИ. Дополнительно счетчики ведут учет суммарной длительности воздействия магнитным полем.

5.8 Работа счетчика с интерфейсом GSM или NB-IoT

5.8.1 Режимы передачи данных

Счетчики с индексами «G1», «G5», «G6», «G7» в коде могут работать в режиме контроллера АИИС КУЭ, выполняя задачи технического и коммерческого учета электроэнергии. Счетчики могут работать в следующих режимах:

- режим инициативной передачи данных модуля связи;
- режим инициативной передачи данных в соответствии с протоколом СПОДЭС версии 4 СТО 34.01-5.1-006-2023;
- режим прямого канала.

Версия 03.2025 Лист 27 из 54

Если нет обмена по прямому каналу и при этом сконфигурирован канал инициативной передачи данных, счетчик начинает работать в режиме инициативной передачи данных.

5.8.2 Инициативная передача данных модуля связи

В режиме инициативной передачи данных счетчик является инициатором передачи данных:

- архивов показаний на начало отчетного периода;
- текущих значений параметров электропитания;
- журналов событий;
- оперативных событий, при наступлении которых выполняется отправка данных.

Для счетчика с интерфейсом NB-IoT режим инициативной передачи данных, который оптимизирован для минимизации трафика, является основным режимом работы. Режим прямого канала является опциональным.

В целях минимизации трафика при настройке режима инициативной передачи данных можно выбрать расписание передачи данных и состав передаваемых данных и событий. Полный перечень параметров и событий, доступных для выбора, приведен в документе «LpWAN Конфигуратор. Руководство пользователя» https://www.incotexcom.ru/support/docs/manual. Выполняется оценка суточного трафика, кроме того, можно установить лимит суточного трафика. Если максимальный объем суточного трафика израсходован, счетчик прекращает передачу данных, что важно для ограничения количества передаваемых данных в нештатных ситуациях.

С вышестоящего уровня управления доступны функции конфигурирования счетчика и управления счетчиком.

Для снижения средних затрат на точку учета, к счетчику с интерфейсом NB-IoT можно подключить по интерфейсу RS485 ведомые счетчики для опроса через ведущий счетчик по NB-IoT. К ведущему счетчику можно подключить не более трех ведомых счетчиков. Для каждого из ведомых счетчиков доступна индивидуальная настройка режима инициативной передачи данных.

Схема работы счетчика с интерфейсом NB-IoT в составе системы АИИС КУЭ в режиме инициативной передачи данных приведена на рисунке 5.2.

Рисунок 5.2 – Схема работы счетчика NB-IoT в составе АИИС КУЭ

В режиме прямого канала счетчики передают данные по запросу из системы верхнего уровня независимо от используемого протокола обмена. Настройка объема запрашиваемых данных, времени запросов данных и прочих параметров обмена данными выполняется в системе верхнего уровня.

Для счетчика с интерфейсом GSM DUAL SIM основным режимом работы является режим прямого канала. Режим инициативной передачи данных является опциональным. Для работы в режиме прямого канала к счетчику с интерфейсом GSM DUAL SIM можно

Версия 03.2025 Лист 28 из 54

подключить по интерфейсу RS485 64 и более ведомых счетчиков. В режиме инициативной передачи данных к ведущему счетчику можно подключить не более трех ведомых счетчиков.

Счетчик с интерфейсом GSM DUAL SIM обеспечивает стабильный и надежный обмен данными, так как может работать по каналам разных операторов сотовой связи. При настройке назначается приоритетный оператор связи, а в процессе работы выполняется автоматический переход в сеть другого оператора, если невозможно передать данные из-за неудовлетворительного качества связи или низкого уровня сигнала. После определенного интервала времени, заданного при настройке, выполняется возврат в сеть приоритетного оператора.

Схема работы счетчика с интерфейсом GSM DUAL SIM в составе системы АИИС КУЭ приведена на рисунке 5.3.

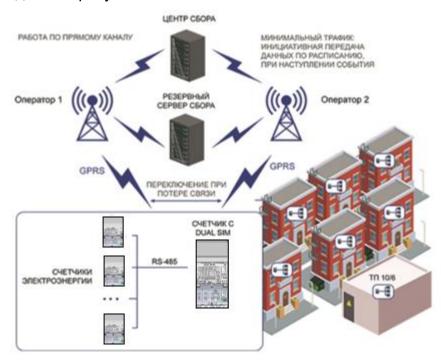


Рисунок 5.3 – Схема работы счетчика DUAL SIM в составе АИИС КУЭ

При вводе в эксплуатацию в составе AC счетчик с интерфейсом NB-IoT или GSM DUAL SIM необходимо настроить для работы в составе системы (сконфигурировать).

Изменение параметров конфигурации выполняется в приложении «LpWAN Конфигуратор», сведения по конфигурированию приведены в документе «LpWAN Конфигуратор. Руководство пользователя».

Конфигурирование следует выполнить в соответствии с эксплуатационной документацией на AC и руководствуясь инструкциями, приведенными в документе «LpWAN Конфигуратор. Руководство пользователя».

Конфигурирование должно осуществляться подготовленным техническим персоналом, владеющим навыками работы с вычислительной техникой и знакомым с задачами AC.

5.8.3 Инициативная передача данных в соответствии с протоколом СПОДЭС

Инициативная передача данных в соответствии с протоколом СПОДЭС реализована с использованием объектов PUSH Setup в соответствии с информационной моделью стандарта СТО 34.01-5.1-006-2023 (спецификация СПОДЭС версии 4).

Версия 03.2025 Лист 29 из 54

6 Использование по назначению

6.1 Требования безопасности

К работам по монтажу, техническому обслуживанию и ремонту счетчика допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III до 1000 В.

ВНИМАНИЕ: ВСЕ РАБОТЫ, СВЯЗАННЫЕ С МОНТАЖОМ СЧЕТЧИКОВ, ДОЛЖНЫ ПРОИЗВОДИТЬСЯ ПРИ ОТКЛЮЧЕННОЙ СЕТИ.

При проведении работ по монтажу и обслуживанию счетчика должны соблюдаться:

- «Правила устройства электроустановок»;
- «Правила технической эксплуатации электроустановок потребителей»;
- «Правила по охране труда при эксплуатации электроустановок».

При монтаже счетчика на месте эксплуатации диаметр подключаемых к счетчику проводов должен выбираться в зависимости от величины максимального тока нагрузки в соответствии с «Правилами устройства электроустановок».

ВНИМАНИЕ: ПРИ МОНТАЖЕ СЧЕТЧИКА ДЛЯ ОБЕСПЕЧЕНИЯ НАДЕЖНОГО КОНТАКТА СИЛОВОГО ПРОВОДА В КОЛОДКЕ, ПРЕДОТВРАЩЕНИЯ ОСЛАБЛЕНИЯ СОЕДИНЕНИЯ, ПРЕДОТВРАЩЕНИЯ НАГРЕВА И ПОСЛЕДУЮЩЕГО ВЫГОРАНИЯ КЛЕММ НЕОБХОДИМО:

ИСПОЛЬЗОВАТЬ ОБЖИМНЫЕ НАКОНЕЧНИКИ ТИПА НШВ 16-18;

ОБЕСПЕЧИТЬ МОМЕНТ ЗАТЯЖКИ ВИНТОВ СИЛОВЫХ ЗАЖИМОВ 2,5-3,0 H·м;

ПОСЛЕ ЗАВЕРШЕНИЯ МОНТАЖА ПОВТОРНО ПОДТЯНУТЬ ВИНТЫ СОЕДИНЕНИЙ.

6.2 Эксплуатационные ограничения

Напряжение, подводимое к параллельным цепям счетчика, не должно превышать значения 1,2Uном в соответствии с модификацией по таблице 2.3.

Максимальный ток нагрузки не должен превышать максимальный ток счетчика в соответствии с модификацией по таблице 2.3.

6.3 Схемы подключения счетчиков

Схема подключения счетчиков приведена в приложении Б.

Подключение счетчиков к измерительным цепям тока и напряжения на объекте эксплуатации должно производиться в соответствии со схемой объекта эксплуатации.

Предприятие-изготовитель не несет ответственности за нарушения схем подключения счетчика и потребителя к электроустановкам и за неисправности электроустановок, приводящие к различиям значений учтенной счетчиком энергии от реальных потребленных значений.

6.4 Подготовка к работе

6.4.1 Общие сведения

Перед монтажом счетчика:

- 1 Извлечь счетчик из потребительской тары.
- 2 Проверить комплектность согласно формуляру.
- 3 Произвести внешний осмотр счетчика, убедиться в отсутствии механических повреждений корпуса и крышки силовых зажимов.
- 4 Проверить наличие пломбы поверителя и дату поверки.
- 5 Ознакомиться с настоящим руководством, назначением клемм силовой колодки и

Версия 03.2025 Лист 30 из 54

разъемов интерфейсов.

- 6 Подготовить крепежные детали, необходимые для монтажа.
- 7 Проверить соответствие прокалывающих зажимов сечению и типу проводов. Рекомендуемый инструмент и принадлежности приведены в таблице 6.1.

Таблица 6.1 – Рекомендуемый инструмент и принадлежности

Наименование	Обозначение	Примечания	
Отвертка динамометрическая	TSD-M 6NM Phoenix	Для затяжки винтов силовых	
		зажимов счетчика	
Бита для отвертки	PZ2 (крест) или	Размер шлица PZ2/SL 5 мм	
динамометрической	PZ2/SL (крест со шлицом)		
Наконечник штыревой	НШВ 16-18	Для обжима многожильного провода	
втулочный		под силовой зажим счетчика	
		(сечение 16 мм², длина втулки	
		18 мм)	
Кримпер (клещи для обжима)	6PK-301S ProsKit	Для обжима штыревого наконечника	
Лента монтажная*	F 207, COT 37	Для фиксации скобы на опоре	
Клещи натяжные винтовые*	BTS (OPV) Telenco	Для натяжения и резки ленты	
Скрепа*	NC 20, A 200	Для фиксации ленты	
Самонесущий изолированный	СИП	Сечение 16 мм ²	
провод*			
Зажим прокалывающий	N 640	Для ответвления провода СИП	
ответвительный*			
Дюбель-гвоздь**	6x50	_	
* Для крепления на опору линии электропередач			

6.4.2 Монтаж счетчика на опору линии электропередачи

Порядок установки счетчиков Меркурий 150U на опору:

- Закрепить скобу для монтажа счетчика на опоре (входит в комплект поставки) с помощью монтажной ленты. Монтажную ленту завести двумя обхватами через два ряда проушин скобы.
- 2 Совместить направляющие на задней стенке счетчика и скобы.
- 3 Надеть счетчик на скобу движением сверху вниз.
- 4 Открыть крышку силовых зажимов.
- 5 Снять изоляцию на длину 18 мм с провода, подключаемого к силовому зажиму счетчика.
- 6 Обжать конец провода с помощью кримпера наконечником НШВ, соответствующим сечению провода. Рекомендуемая форма обжатия – квадрат или прямоугольник (рисунок 6.1).

Рисунок 6.1 – Обжим провода СИП наконечником НШВ 16-18

ВНИМАНИЕ: ИСПОЛЬЗОВАНИЕ НЕОБЖАТОГО МНОГОЖИЛЬНОГО ПРОВОДА ПРИВОДИТ К ОСЛАБЛЕНИЮ СОЕДИНЕНИЯ, НАГРЕВУ И ПОСЛЕДУЮЩЕМУ ВЫГОРАНИЮ КЛЕММ ВСЛЕДСТВИЕ ПЛОХОГО КОНТАКТА.

Вставить провод в силовой зажим без перекосов. Не допускается попадание в зажим участка провода с изоляцией, а также выступ за пределы колодки

Версия 03.2025 Лист 31 из 54

^{**} Для крепления на стену

- оголенного участка.
- 8 Затянуть верхний винт силового зажима с рекомендуемым усилием 2,5–3,0 Н·м с помощью динамометрической отвертки. Затягивание следует производить аккуратно, без рывков во избежание срыва резьбы. Убедиться, что провод зажат, слегка потянув за него.
- 9 Затянуть нижний винт силового зажима. Убедиться, что провод зажат, слегка потянув за него.
- 10 Подключить остальные провода, повторив пп. 5-9.
- 11 Через 5 мин повторно подтянуть винты силовых зажимов.
- 12 Закрыть крышку силовых зажимов.
- 13 Подключить входные провода СИП к магистральному проводу с помощью прокалывающих зажимов.
- 14 Убедиться в работоспособности счетчика: индикатор функционирования начнет светиться.
- 15 Опломбировать крышку зажимов.
- 16 Сделать отметку в формуляре о дате установки счетчика и ввода его в эксплуатацию.

Максимальный внешний диаметр токоведущей части одножильного провода или диаметр наконечника для подключения к силовым зажимам счетчика 7 мм.

6.4.3 Монтаж счетчика на плоскую поверхность

Порядок установки счетчиков Меркурий 150М, Меркурий 150:

- 1 Выдвинуть верхний крепежный элемент до упора вверх.
- 2 Установить два нижних крепежных элемента (в стандартный комплект поставки не входят, комплектуются по предварительному заказу) в пазы корпуса до щелчка.
- 3 Прислонить счетчик к плоской поверхности.
- 4 Зафиксировать счетчик с помощью саморезов через отверстия крепежных элементов (рисунок 6.2).

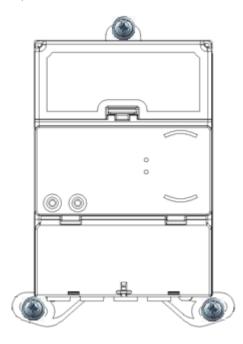


Рисунок 6.2 – Крепеж счетчика на плоскую поверхность

- 5 Открыть крышку силовых зажимов.
- 6 Вставить провод в силовой зажим без перекосов. Не допускается попадание в зажим участка провода с изоляцией, а также выступ за пределы колодки оголенного участка.
- 7 Затянуть верхний винт силового зажима с рекомендуемым усилием 2,5-3,0 Н·м с

Версия 03.2025 Лист 32 из 54

- помощью динамометрической отвертки. Затягивание следует производить аккуратно, без рывков во избежание срыва резьбы. Убедиться, что провод зажат, слегка потянув за него.
- 8 Затянуть нижний винт силового зажима. Убедиться, что провод зажат, слегка потянув за него.
- 9 Подключить остальные провода, повторив пп. 6-8.
- 10 Через 5 мин повторно подтянуть винты силовых зажимов.
- 11 Закрыть крышку силовых зажимов.
- 12 Подать напряжение на счетчик и убедиться в его работоспособности: на ЖКИ начнет отображаться цикл автоматической индикации параметров.
- 13 Опломбировать крышку силовых зажимов пломбой обслуживающей организации.
- 14 Сделать отметку в формуляре о дате установки счетчика и ввода его в эксплуатацию.

Максимальный внешний диаметр токоведущей части одножильного провода или диаметр наконечника для подключения к силовым зажимам счетчика 7 мм.

6.4.4 Монтаж антенны

При использовании счетчиков с радиоинтерфейсами GSM, NB-IoT, LoRaWAN, XNB в случае применения внешних антенн рекомендуется использовать антенны с магнитным или клейким креплением. Антенна должна устанавливаться в месте, не экранированном металлом и обеспечивающим лучшие условия для прохождения радиоволн.

Счетчик может комплектоваться «лепестковой» или «штыревой» антенной. Примеры антенн приведены на рисунке 6.3.

Рисунок 6.3 – «Лепестковая» (слева) и «штыревая» (справа) антенны

Использование антенны, подключаемой непосредственно в антенное гнездо счетчика без дополнительного кабеля и размещаемой под клеммной крышкой счетчика, рекомендуется только в местах надежного приема радиосигнала.

Счетчики модификаций «F0x» и «Gn» могут иметь размещенные внутри счетчика встроенные антенны соответствующих интерфейсов.

ВНИМАНИЕ! В связи со значительным ослаблением радиосигналов металлическими поверхностями, не рекомендуется размещать в металлических шкафах счетчики со встроенными антеннами и счетчики с антеннами под клеммной крышкой.

При необходимости на объекте эксплуатации для счетчиков модификаций «Gn» могут быть использованы любые серийно выпускаемые антенны GSM/NB-IoT со следующими параметрами:

• рабочий диапазон частот 900 и 1800 МГц;

Версия 03.2025 Лист 33 из 54

- коэффициент усиления не менее 3 dBi;
- минимально достаточная на конкретном объекте длина антенного кабеля, желательно не более 3 м;
- разъем на кабеле для подключения к антенному входу счетчика SMA-M.

ВНИМАНИЕ! Имеющиеся в свободной продаже антенны различных частотных диапазонов могут выглядеть одинаково, но иметь разные технические характеристики.

При монтаже антенны следует выполнять рекомендации:

- 1 Антенну любого типа располагать как можно выше от поверхности земли (пола).
- 2 «Лепестковую» антенну на клейкой основе располагать вертикально, питающим проводом вниз, т. е. наклеивать на вертикально расположенное неметаллическое основание (дерево, пластик, стекло и т. п.). При отсутствии неметаллических поверхностей допускается наклеивать антенну на металлические поверхности, при этом ожидается незначительное ухудшение качества приема.
- 3 Лицевую сторону «лепестковой» антенны (противоположную клеевому слою и поверхности, на которую антенна наклеена) направить на ближайшую базовую станцию соответствующего оператора связи.
- 4 Штыревую антенну на магнитном/клейком основании размещать на металлическом основании вертикально, штырем вверх.
- ВНИМАНИЕ! Крепление антенны на металлическую поверхность приводит к значительному ухудшению приема сигнала в этом направлении.
- ВНИМАНИЕ! Скрутка неиспользуемого кабеля в бухту «виток к витку» не допускается.

Возможные причины плохого качества связи при использовании беспроводных интерфейсов связи:

- 1 Ошибки в планировании радиопокрытия при размещении базовых станций.
- В случае разворачивания сети базовых станций собственными силами или с привлечением подрядных организаций следует обратиться в компанию-разработчик соответствующей радиотехнологии для получения рекомендаций по радиопланированию, в том числе, по изменению местоположения и (или) ориентации базовых станций.
 - 2 Неудачное местоположение или неверная ориентация антенны.

В случае неудачного расположения антенны следует смонтировать антенну в другом месте с соблюдением приведенных выше рекомендаций.

6.4.5 Рекомендации по использованию SIM-карт

Требования к SIM-карте:

- формат miniSIM;
- стандарт GSM (900/1800 МГц);
- отключен контроль PIN-кода;
- активирована услуга GPRS;
- положительный баланс счета.

Для отключения PIN-кода и активации услуги GPRS следует предварительно установить SIM-карту в любой мобильный телефон и действовать согласно инструкции к телефону.

ВНИМАНИЕ: УСТАНОВКУ И ЗАМЕНУ SIM-КАРТ ПРОИЗВОДИТЬ ТОЛЬКО ПРИ ОТКЛЮЧЕННОМ ЭЛЕКТРОПИТАНИИ.

ВНИМАНИЕ: При использовании счетчиков с радиоинтерфейсами GSM или NB-IoT рекомендуется использовать специализированные термостойкие M2M SIM-карты, доступные для приобретения через сотовых операторов. Использование «обычных» SIM-карт может привести к отсутствию связи при

Версия 03.2025 Лист 34 из 54

колебаниях температуры.

ВНИМАНИЕ: Счетчики с индексом «G1» в коде не имеют возможности работы по CSD и обеспечивают передачу данных только по GPRS/EDGE.

Для получения доступа к сменному модулю связи:

- 1 Отжать фиксатор крышки модуля связи с помощью шлицевой отвертки, установив до упора плоский конец отвертки между крышкой модуля связи и прозрачной крышкой корпуса (рисунок 6.4).
- 2 Сдвинуть крышку по направлению «к себе».

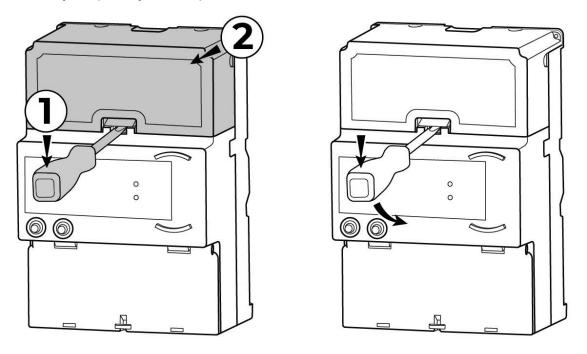


Рисунок 6.4 – Доступ к сменному модулю связи

6.4.6 Рекомендации по подключению интерфейсов

ВНИМАНИЕ: ИНТЕРФЕЙСНЫЕ КАБЕЛИ ПОДКЛЮЧАТЬ ТОЛЬКО ПРИ ОТКЛЮЧЕННОМ ЭЛЕКТРОПИТАНИИ.

Расположение оптической головки и назначение контактов для подключения интерфейса RS485 приведено на рисунке 6.5 Error! Reference source not found.

Версия 03.2025 Лист 35 из 54

Рисунок 6.5 – Расположение оптической головки (слева) и назначение контактов для подключения интерфейса RS485 (справа)

Счетчики имеют внутреннее питание интерфейса RS485.

При подключении нескольких счетчиков в сеть по интерфейсу RS485 необходимо использовать топологию сети «общая шина».

Для подключения интерфейса RS485 рекомендуется использовать провод типа витая пара пятой категории U/UTP CAT 5. Подсоединение осуществляется к самозажимному разъему без дополнительного инструмента. Для отсоединения провода следует без усилий нажать на рычаг разъема.

При использовании многожильного провода рекомендуется использовать обжимные наконечники типа НШВИ-0.5-8.

Для улучшения качества связи рекомендуется для интерфейса RS485 применять согласующие резисторы. Согласующие резисторы должны устанавливаться на обоих концах линии RS485. Согласующие резисторы должны иметь сопротивление 120 Ом ±10 %. При суммарной длине линии RS485 менее пяти метров применение согласующих резисторов необязательно.

ВНИМАНИЕ! ПРИ ПОДКЛЮЧЕНИИ НЕСКОЛЬКИХ СЧЕТЧИКОВ В СЕТЬ ПО ИНТЕРФЕЙСУ RS485 НЕ РЕКОМЕНДУЕТСЯ ДЕЛАТЬ ОТВЕТВЛЕНИЯ ЛИНИИ ДЛИНОЙ БОЛЕЕ 1 М.

Электрические характеристики интерфейса RS485 позволяют подключать в линию до 256 устройств. При проектировании длинных линий RS485 (более 32 счетчиков) рекомендуется соблюдать принцип последовательного соединения устройств (топология общей шины), исключая отводы, либо использовать повторители интерфейса RS485.

6.4.7 Сетевой адрес и пароли доступа

Правила формирования сетевых адресов различны для счетчиков без индекса «D» и с индексом «D».

Разрешенный диапазон значений сетевого адреса счетчика без индекса «D» от 1 до 239 включительно. При выпуске из производства сетевой адрес соответствует трем последним цифрам серийного номера счетчика. В случае, если три последние цифры больше 239, то сетевой адрес соответствует двум последним цифрам. Сетевой адрес, равный 0, заменяется на 1.

Примеры:

Версия 03.2025 Лист 36 из 54

- серийный номер 38395190 -> сетевой адрес 190
- серийный номер 38395790 -> адрес 90
- серийный номер 38395700 -> адрес 1

При использовании только протокола Меркурий без переключения на СПОДЭС допускается использовать кодировку пароля НЕХ:

- пароль первого уровня доступа по умолчанию 0х111111 (шесть единиц);
- пароль второго уровня доступа по умолчанию 0х222222 (шесть двоек).

Если в процессе работы требуется переключение протоколов, пароль счетчиков без индекса «D» в коде должен устанавливаться в кодировке ASCII.

Разрешенный диапазон значений сетевого адреса счетчика с индексом «D» от 16 до 16 381 включительно. При выпуске из производства сетевой адрес соответствует трем последним цифрам серийного номера счетчика. В случае, если три последние цифры больше 124, то сетевой адрес соответствует двум последним цифрам. Сетевой адрес, меньший 17, заменяется на «сетевой адрес + 10» до тех пор, пока сетевой адрес не станет 17 или более.

Примеры:

- серийный номер 38395190 -> сетевой адрес 90
- серийный номер 38395790 -> адрес 90
- серийный номер 38395700 -> адрес 20 (0 + 10 + 10)
- серийный номер 38395507 -> адрес 17 (7 + 10)

Пароль счетчиков с индексом D в коде передается в кодировке ASCII:

- пароль первого уровня доступа по умолчанию 111111 (шесть единиц);
- пароль второго уровня доступа по умолчанию 22222222222222 (шестнадцать двоек).

ВНИМАНИЕ: Перед запуском счетчика в эксплуатацию рекомендуется изменить сетевой адрес и пароль счетчика, установленный на предприятии-изготовителе, с целью предотвращения несанкционированного доступа к программируемым параметрам счетчика через интерфейсы связи.

Пароль доступа одинаков для всех интерфейсов счетчика, т. е. при изменении пароля для одного интерфейса, этот же пароль будет установлен для остальных интерфейсов.

Паролем в кодировке ASCII для протокола Меркурий являются первые шесть символов пароля для протокола СПОДЭС.

При изменении пароля для протокола Меркурий изменяется пароль для протокола СПОДЭС (первые шесть символов).

При изменении пароля для протокола СПОДЭС (включая первые шесть символов) изменяется пароль для протокола Меркурий на эти первые шесть символов.

Восстановление пароля для протокола СПОДЭС (при его утрате) осуществляется только в условиях сервисного центра на заводе-изготовителе.

6.4.8 Заводские настройки

Заводские настройки счетчика приведены в приложении В.

6.5 Порядок работы

6.5.1 Индикация и управление

Счетчики Меркурий 150М, Меркурий 150, Меркурий 150Х имеют символьный ЖКИ и две кнопки управления навигацией по меню для отображения измеряемых величин и состояния счетчика.

Для отображения измеряемых величин счетчиков Меркурий 150U используется выносной дисплей «Меркурий 258», отображение и навигация по меню которого

Версия 03.2025 Лист 37 из 54

соответствуют ЖКИ счетчиков Меркурий 150М, Меркурий 150 и более подробно описаны в паспорте выносного дисплея.

Значения учтенной энергии по тарифным зонам и другие параметры могут быть считаны как с ЖКИ счетчика, так и через интерфейсы связи.

Счетчики выдают показания на ЖКИ непосредственно в инженерных единицах, в частности, в кВт-ч при измерении активной энергии и в квар-ч при измерении реактивной энергии. ЖКИ имеет восемь десятичных разрядов, из них первые шесть индицируют целое значение электроэнергии в кВт-ч, а два разряда после запятой — значение электроэнергии в сотых долях кВт-ч.

При включении счетчиков Меркурий 150М и Меркурий 150 производится включение всех сегментов ЖКИ.

Все надписи на ЖКИ выводятся на русском языке, исключая значение «Соѕф». Внешний вид ЖКИ приведен на рисунке 6.6.

Рисунок 6.6 – Внешний вид ЖКИ

В основном поле ЖКИ отображается до 8 цифр значения выбранного параметра с единицами измерений, в дополнительном поле — до 8 цифр его OBIS-кода (тип по международной классификации IEC 62056-61). Высота цифр значения параметра и его OBIS-кода 12 и 8 мм соответственно. Описание символов ЖКИ приведено в таблице 6.2.

Таблица 6.2 – Описание назначения символов ЖКИ

Символ	Описание		
T8	Текущий отображаемый тариф от 1 до 4		
Σ	Σ Суммарно по всем действующим тарифам		
ДЕНЬ МЕСЯЦ ГОД ПРЕД	Текущий отображаемый период. Например, отображение МЕСЯЦ ПРЕД означает, что отображаются данные измерений за предыдущий месяц, отображение ДЕНЬ – за текущий день		
iii	Дата		
0	Время		
Cosφ	Коэффициент мощности		
Гц Индикатор частоты электросети			
лим	Причина отключения встроенного реле – превышение лимита мощности либо энергии		
дист	Причина отключения встроенного реле – дистанционное отключение энергоснабжающей компанией		
ПОТЕРИ	Индикатор отображения технических потерь (в трансформаторах и линиях электропередач)		
MAKC	Индикатор отображения максимума мощности		
-	Направление потока энергии при индикации значений потребленной энергии, направление вектора полной мощности при индикации тока, напряжения, мощности		
6	Обнаружено вскрытие корпуса, электронная пломба крышки счетчика		

Версия 03.2025 Лист 38 из 54

Символ	Описание		
Ü	Обнаружено воздействие магнита		
≠	Обнаружен небаланс токов фазы и нейтрали		
/ _	Встроенное реле отключено (горит непрерывно) Готов к включению (мигает)		
	Заряд батареи в норме		
	Низкий заряд батареи		
	Уровень сигнала (качество связи с выносным дисплеем)		
~	Выход параметров качества электроэнергии за допустимые пределы		
\triangle	Индикатор наличия событий (нарушения ПКЭ, несанкционированного доступа, включая магнитное воздействие, диагностики, самодиагностики, сообщение об аварии или неисправности сети)		

Отображаемые параметры разделены на настраиваемые группы. В пределах каждой группы параметры отображаются по кадрам. Кадр представляет собой один экран с одним или несколькими параметрами.

Состав и порядок отображения групп, а также состав и порядок отображения параметров в группе настраиваются.

По умолчанию выполняется следующая настройка групп индикации:

- текущие значения потребленной энергии;
- текущие значения параметров сети;
- текущие значения за расчетный период;
- технологические параметры счетчика.

В первой группе смена кадров выполняется в автоматическом режиме. В любой из групп смена кадров может выполняться в ручном режиме с помощью кнопок.

Состав параметров в каждой из групп, задается в настройках параметров индикации счетчика. Настройку можно выполнить с помощью ПО «Конфигуратор СПОДЭС».

Полный перечень параметров, доступных для индикации, а также перечень параметров и групп параметров, запрограммированных по умолчанию, приведены в приложении Д.

В счетчиках Меркурий 150М, Меркурий 150 используется два режима индикации:

- режим автоматической смены информации по циклу (циклической индикации);
- ручной режим смены информации с помощью кнопок, расположенных на лицевой панели.

В ручном режиме работа кнопок организована следующим образом:

- краткое нажатие любой из кнопок производит смену кадра в группе;
- кадры прокручиваются в обе стороны (нажатие вправо следующий кадр, влево предыдущий);
- при длительном нажатии кнопки происходит смена групп индикации;
- прокрутка групп выполняется в обе стороны (вправо следующая группа, влево предыдущая группа).

При отсутствии нажатия на кнопки в течение заданного периода времени счетчик переходит в режим автоматической индикации, при этом отображается первый параметр в группе автоматической индикации.

Группы индикации и переходы между ними для настройки по умолчанию приведены на рисунке 6.7.

Перечень параметров, доступных для включения в группы индикации при индивидуальной настройке, приведен в приложении Д.

Версия 03.2025 Лист 39 из 54

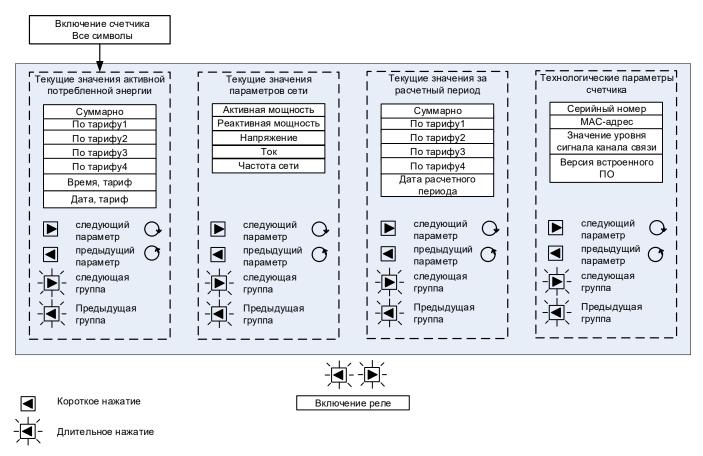


Рисунок 6.7 – Группы индикации по умолчанию и переходы между ними

В автоматическом режиме на ЖКИ последовательно выводится информация группы автоматической индикации

Для перехода к другим группам параметров используется длительное (более трех секунд) нажатие кнопок, для перехода к следующему параметру в группе — короткое нажатие.

Пример перехода к ручному режиму и выбора параметра «Напряжение» группы «Текущие значения параметров сети»: длинное нажатие правой кнопки, два коротких нажатия правой кнопки до появления символа «В».

Индикация параметров (потребленной активной и реактивной энергии по каждому тарифу и суммы по всем тарифам) производится с указанием номера тарифа, с дискретностью 0,01 кВт.ч или квар.ч (два знака после запятой).

Счетчики, запрограммированные в однотарифный режим, обеспечивают вывод на ЖКИ значения потребляемой электроэнергии только по одному тарифу.

Пример отображения на ЖКИ учтенной активной энергии по первому тарифу приведен на рисунке 6.8.

Рисунок 6.8 – Отображение учтенной энергии

Пример отображения на ЖКИ текущего времени приведен на рисунке 6.9.

Версия 03.2025 Лист 40 из 54

Рисунок 6.9 – Отображение текущего времени

Пример отображения на ЖКИ значения напряжения приведен на рисунке 6.10.

Рисунок 6.10 - Отображение значения напряжения

GSM модуль счетчиков Меркурий 150М и Меркурий 150 имеет светодиодную индикацию режимов работы. Назначение индикаторов указано на крышке отсека сменного модуля. Описание элементов индикации приведено в таблице 6.3.

Таблица 6.3 – Описание элементов индикации GSM модуля

Тип GSM модуля	Индикатор	Цвет свечения	Состояние	Описание
G	Питание	Зеленый	Отключен	GSM модуль отключен
			Включен	GSM модуль включен
	Режим работы	Красный	Одна вспышка	Есть регистрация в сети GSM, уровень сигнала 25 %
	Post 5 1 2 1		Две вспышки	Есть регистрация в сети GSM, уровень сигнала 50 %
			Три вспышки	Есть регистрация в сети GSM, уровень сигнала 75 %
			Четыре вспышки	Есть регистрация в сети GSM, уровень сигнала 100 %
G1, G5, G6	Питание	Зеленый	Отключен	GSM модуль отключен
			Включен	GSM модуль включен
	Режим работы	Зеленый (синий – для	Мигает 1 раз в 0,8 с	Нет регистрации в сети GSM
		Меркурий 150M)	Мигает редко 1 раз в 2 с	Есть регистрация в сети GSM
		·	Мигает часто 1 раз в 0,6 с	Идет обмен данными по GSM
G7	Питание	Зеленый*	Отключен	GSM модуль отключен
			Включен	GSM модуль включен
			Кратковременное	Прием/передача пакета
		214	выключение	данных
	Режим работы	Желтый*	Одна вспышка	Есть регистрация в сети GSM, уровень сигнала 25 %
			Две вспышки	Есть регистрация в сети GSM, уровень сигнала 50 %

Версия 03.2025 Лист 41 из 54

Тип	Индикатор	Цвет	Состояние	Описание
GSM		свечения		
модуля				
			Три вспышки	Есть регистрация в сети GSM, уровень сигнала 75 %
			Четыре вспышки	Есть регистрация в сети GSM, уровень сигнала 100 %
			Включен	Активная сессия TCP/IP соединения
	Режим	Синий	Включен	Включение субмодуля GSM
	работы субмодуля		Мигает 1 раз в 0,8 с	Нет регистрации в сети GSM
	GSM		Мигает редко 1 раз в 2 с	Есть регистрация в сети GSM
	*Для счетчиков сплит-исполнения: индикатор питания — желтый, индикатор режима			

работы – зеленый

6.5.2 Использование счетчиков с выносным дисплеем

Счетчики сплит-исполнения Меркурий 150U имеют возможность прямого обмена данными с выносным дисплеем Меркурий 258 по радиоканалу, а также возможность привязки пары выносной дисплей-счетчик на месте установки для взаимозаменяемости.

Выносной дисплей обеспечивает сохранность конфигурационных настроек связи со счетчиком в собственной энергонезависимой памяти. При работе со счетчиками с выносным дисплеем следует ознакомиться с паспортом на выносной дисплей Меркурий 258, содержащим указания по использованию дисплея.

При поставке выносного дисплея в комплекте со счетчиком настройка их совместной работы не требуется. В случае замены выносного дисплея или счетчика на месте эксплуатации требуется процедура сопряжения счетчика и выносного дисплея, описанная в паспорте на выносной дисплей.

6.5.3 Использование в составе системы учета

Для работы счетчика в составе автоматизированной системы учета необходимо провести конфигурирование параметров счетчика по любому из интерфейсов с помощью Конфигуратор СПОДЭС, доступного предприятия-изготовителя на сайте https://www.incotexcom.ru/support/soft/service. Перечень и значения конфигурируемых параметров определяются эксплуатирующей организацией.

Для уменьшения затрат времени при пусконаладочных работах на объекте эксплуатации, рекомендуется проводить конфигурирование счетчика в условиях эксплуатирующей организации.

6.5.4 Контроль работоспособности

Признаки работоспособности счетчика:

- на ЖКИ счетчиков Меркурий 150М, Меркурий 150 отображается значение учтенной энергии по текущей тарифной зоне;
- индикатор функционирования счетчика светится;
- наличие связи между счетчиком и выносным дисплеем;
- наличие связи по интерфейсам обмена данными.

наличии ЖКИ счетчика или При на выносного дисплея символа несанкционированного доступа и/или сообшений о событиях самодиагностики необходимо обратиться в эксплуатирующую организацию.

Счетчики фиксируют, в том числе, следующие неисправности по результатам самодиагностики:

- неисправность измерительного блока, включая неверные контрольные суммы метрологических коэффициентов;
- неисправность вычислительного блока, включая неверные контрольные суммы

Лист 42 из 54 Версия 03.2025

результатов вычислений;

- неисправность таймера, включая функционирование часов реального времени и неверные контрольные суммы конфигурационных параметров времени;
- неисправность блока питания;
- неисправность блока памяти с определением неисправной аппаратной части и поврежденного блока данных.

Перечень кодов событий самодиагностики приведен в приложении Г.

7 Поверка

Счетчик подлежит государственному метрологическому контролю и надзору.

При выпуске из производства счетчик подвергается первичной поверке органами государственной метрологической службы или юридическими лицами, аккредитованными на право поверки. Поверка счетчика осуществляется в соответствии с методикой поверки МП 26.51.63.130-073-74537069-2023.

Интервал между поверками – 16 лет.

Интервал между поверками на территории Республики Беларусь – 8 лет.

Интервал между поверками на территории Республики Казахстан – 8 лет.

Интервал между поверками для экспортируемых счетчиков устанавливается согласно действующему законодательству страны импортера, но не более 16 лет.

В процессе эксплуатации счетчик подвергается периодической и внеочередной поверке. После ремонта счетчик подлежит обязательной поверке. Результаты поверок заносятся в формуляр.

Расположение оптического импульсного выхода и индикатора функционирования приведено на рисунке 7.1.

Рисунок 7.1 – Расположение оптического импульсного выхода

8 Техническое обслуживание

Счетчики предназначены для непрерывной круглосуточной эксплуатации без обязательного присутствия обслуживающего персонала.

К работам по техническому обслуживанию счетчика допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III до 1000 В.

Перечень работ по техническому обслуживанию и периодичность технического обслуживания приведены в таблице 8.1.

Таблица 8.1 – Работы по техническому обслуживанию

Перечень работ по техническому обслуживанию	Периодичность

Версия 03.2025 Лист 43 из 54

Удаление пыли с корпуса и лицевой панели счетчика			
Проверка надежности подключения силовых и интерфейсных цепей счетчика *			
Проверка исправности батареи питания и отсутствия ошибок работы счетчика	1 раз в 6 лет		
* В соответствии с графиком планово-предупредительных работ	эксппуатирующей		

организации
Удаление пыли с поверхности счетчика производится чистой, мягкой обтирочной ветошью.

Для проверки надежности подключения силовых и интерфейсных цепей счетчика необходимо:

- 1 Обесточить счетчик.
- 2 Удалить пломбу на крышке силовых зажимов.
- 3 Открыть крышку.
- 4 Удалить пыль с силовых зажимов с помощью кисти.
- 5 Убедиться, что каждый провод зажат, слегка потянув за него.
- 6 Подтянуть винты силовых зажимов при необходимости.
- 7 Закрыть крышку, зафиксировав защелками.
- 8 Опломбировать крышку.
- 9 Сделать запись в формуляре счетчика в разделе «Особые отметки».

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ ПРОВОДИТЬ РАБОТЫ ПО ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ СЧЕТЧИКА, НАХОДЯЩЕГОСЯ ПОД НАПРЯЖЕНИЕМ.

В случае разряда основной встроенной батареи, на объекте эксплуатации в счетчик может быть установлена дополнительная батарея, которая устанавливается внутри корпуса отдельно и независимо от основной встроенной батареи.

Порядок установки дополнительной батареи:

- 1 Обесточить счетчик.
- 2 Удалить пломбу на крышке силовых зажимов.
- 3 Открыть крышку.
- 4 Извлечь держатель батареи из счетчика движением вверх легким покачиванием и без лишний усилий.
- 5 Установить батарею в держатель, соблюдая полярность.
- 6 Установить держатель батареи в счетчик движением вниз без лишних усилий.
- 7 Закрыть крышку силовых зажимов.
- 8 Опломбировать крышку пломбой эксплуатирующей организации.
- 9 Сделать запись в формуляре счетчика в разделе «Особые отметки».

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ УСТАНОВКУ БАТАРЕИ В СЧЕТЧИК, НАХОДЯЩИЙСЯ ПОД НАПРЯЖЕНИЕМ.

Дополнительную батарею возможно приобрести на предприятии-изготовителе или в специализированных магазинах. Требуемые технические характеристики батареи:

- типоразмер батареи 1/2АА (14250);
- номинальное напряжение 3,6 В;
- электрохимическая система LiSOCl2.

Рекомендуемые типы и производители батарей: SB-AA02 (TEKCELL), ER14250 (EEMB), LS14250 (SAFT), TL-4902 (TADIRAN).

ВНИМАНИЕ: ИСПОЛЬЗОВАНИЕ БАТАРЕИ С НОМИНАЛЬНЫМ НАПРЯЖЕНИЕМ 3.0 В НЕ ДОПУСКАЕТСЯ.

9 Текущий ремонт

Текущий ремонт счетчика осуществляется предприятием-изготовителем или юридическими и физическими лицами, имеющими лицензию на проведение ремонта счетчика.

После проведения ремонта счетчик подлежит поверке.

Версия 03.2025 Лист 44 из 54

10 Транспортирование

Условия транспортирования счетчиков в транспортной таре предприятияизготовителя должны соответствовать ГОСТ 31819.11-2012, ГОСТ 22261-94 группа 4 с дополнениями:

- температура окружающего воздуха от минус 50 до плюс 70 °C;
- относительная влажность воздуха не более 95 % при температуре 30 °C.

Вид отправок – мелкий малотоннажный.

Счетчики должны транспортироваться в крытых железнодорожных вагонах, перевозиться автомобильным транспортом с защитой от дождя и снега, водным транспортом, а также транспортироваться в герметизированных отапливаемых отсеках самолетов в соответствии с документами:

- «Правила перевозок грузов автомобильным транспортом», утвержденные министерством автомобильного транспорта;
- «Правила перевозок грузов железнодорожным транспортом», утвержденные министерством путей сообщения;

«Технические условия погрузки и крепления грузов в вагонах и контейнерах», утвержденные министерством путей сообщения;

• «Руководство по грузовым перевозкам на внутренних воздушных линиях», утвержденное министерством гражданской авиации.

При погрузочно-разгрузочных работах и транспортировании должны соблюдаться требования манипуляционных знаков на упаковке счетчика.

11 Хранение

Счетчик должен храниться в упаковке в складских помещениях потребителя (поставщика), условия хранения должны соответствовать ГОСТ 31819.11-2012, ГОСТ 22261-94 группа 4 с дополнениями:

- температура окружающего воздуха от минус 50 до плюс 70 °C;
- относительная влажность воздуха не более 95 % при температуре 30 °C.

В местах хранения счетчика воздух не должен содержать токопроводящей пыли и примесей, вызывающих коррозию металлов и разрушающих изоляцию.

12 Правила и условия реализации и утилизации

Реализация счетчика осуществляется через розничные и оптовые дилерские сети торговых партнеров, заключивших с изготовителем договор о реализации продукции.

При реализации счетчика должны соблюдаться правила обращения на рынке, установленные статьей 3 ТР ТС 004/2011 «О безопасности низковольтного оборудования», требования к реализации товаров потребителям, установленные в Законе РФ от 07.02.1992 № 2300-1 «О защите прав потребителей».

Утилизации подлежит счетчик, выработавший ресурс и непригодный для дальнейшей эксплуатации (сгоревший, разбитый, значительно увлажненный и т. п.).

После передачи на утилизацию и разборки счетчика, детали конструкции, годные для дальнейшего употребления, не содержащие следов коррозии и механических воздействий, допускается использовать в качестве запасных частей.

Свинцовые пломбы и литиевые батареи подлежат сдаче в соответствующие пункты приема.

Остальные компоненты счетчика являются неопасными отходами класса V, не содержат веществ и компонентов, вредно влияющих на окружающую среду и здоровье человека, поэтому особых мер по защите при утилизации не требуется.

Счетчик не содержит драгметаллов.

Детали корпуса счетчика сделаны из ABS-пластика и поликарбоната и допускают вторичную переработку.

Электронные компоненты, извлеченные из счетчика, дальнейшему использованию не подлежат.

Версия 03.2025 Лист 45 из 54

Версия 03.2025 Лист 46 из 54

Приложение А Габаритные чертежи

(Справочное)

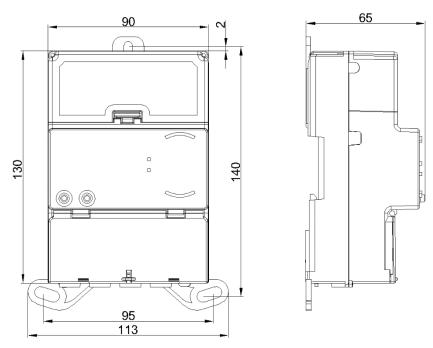


Рисунок А.1 – Габаритный чертеж счетчиков Меркурий 150M, Меркурий 150

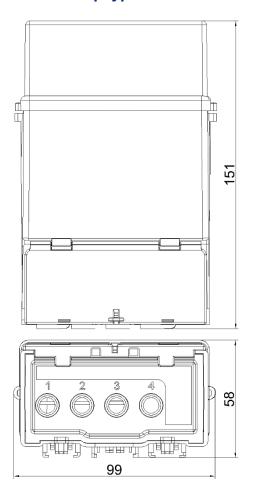


Рисунок А.2 – Габаритный чертеж счетчика Меркурий 150U

Версия 03.2025 Лист 47 из 54

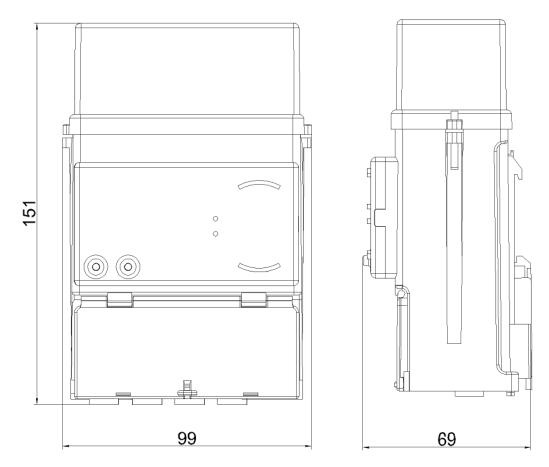


Рисунок А.3 – Габаритный чертеж счетчиков Меркурий 150Х

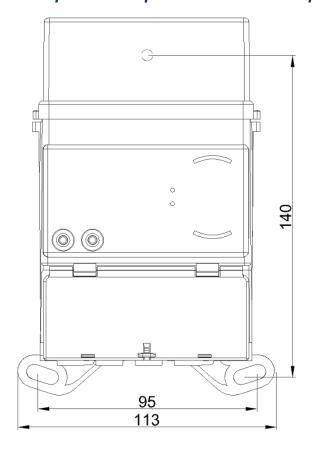


Рисунок А.4 – Крепежные размеры для крепления на стену счетчика Меркурий 150X

Версия 03.2025 Лист 48 из 54

Приложение Б Схема подключений

(Обязательное)

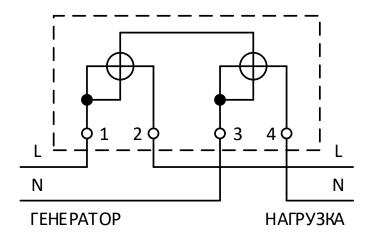


Рисунок Б.1 – Схема подключений

Версия 03.2025 Лист 49 из 54

Приложение В Заводские настройки счетчиков

(Справочное)

Параметр	Значение
Тип протокола	СПОДЭС
Пароль уровня доступа 1	111111 (ASCII)
Пароль уровня доступа 2	22222222222222 (ASCII)
Часовой пояс	(UTC+3) Москва
Прямая установка времени	Разрешена
Время включения тарифа 1	07 ч 00 мин
Время включения тарифа 2	23 ч 00 мин
Расчетное число месяца	1
Интервал интегрирования основного и дополнительного профилей	
мощности, мин:	
– для счетчиков прямого включения	60
– для счетчиков косвенного включения	30
– для счетчиков с индексом «F04» в коде	30
Параметры качества электроэнергии	по ГОСТ 32144-2013
Управление нагрузкой:	
– номер режима	4
– состояние элемента управления	Вкл
– состояние выхода	Вкл
– автовключение	Откл
Параметры ограничителей:	
– «Превышение лимита мощности»	Неактивен
– «Превышение максимального тока»	1,05 <i>Імакс</i>
– «Превышение максимального напряжения»	1,20 <i>Uном</i>
– «Превышение дифференциального тока»	Неактивен
– «Превышение температуры», °С	Неактивен
– «Превышение лимита энергии» по тарифу 1	Неактивен
– «Превышение лимита энергии» по тарифу 2	Неактивен
Режим телеметрического выхода	Активная энергия
	потребления
Параметры индикации:	
– период обновления индикации, с	1
– длительность индикации текущего тарифа, с	10
– длительность индикации нетекущего тарифа, с	10
– время возврата в автоматический режим, с	30
Коэффициенты трансформации:	
– по напряжению	1
– по току	1
– учет коэффициентов трансформации	Нет
– учет коэффициентов трансформации при индикации	Нет

Версия 03.2025 Лист 50 из 54

Приложение Г Перечень кодов событий самодиагностики

(Справочное)

Код ошибки	Описание	Рекомендации
E-01	Состояние батареи. Напряжение основной батареи менее 2,2 В, основная батарея разряжена	Установить дополнительную батарею
E-02	Нарушено функционирование памяти №2	Уточнить наличие сопутствующих кодов ошибок
E-03	Нарушено функционирование UART1	Обратиться в техподдержку
E-04	Нарушено функционирование АЦП	Обратиться в техподдержку
E-05	Нарушено функционирование памяти №1	Уточнить наличие сопутствующих кодов ошибок
E-06	Нарушено функционирование часов	Переустановить время счетчика
E-07	Нарушено функционирование памяти №3	Уточнить наличие сопутствующих кодов ошибок
E-08	Резерв	_
E-09	Ошибка CRC программы	Обратиться в техподдержку
E-10	Ошибка CRC массива калибровочных коэффициентов	Обратиться в техподдержку
E-11	Ошибка CRC массива регистров накопленной энергии	Обратиться в техподдержку
E-12	Ошибка CRC сетевого адреса	Выполнить запись адреса счетчика
E-13	Ошибка CRC серийного номера	Обратиться в техподдержку
E-14	Ошибка CRC пароля	Обратиться в техподдержку
E-15	Ошибка CRC массива варианта исполнения счетчика	Обратиться в техподдержку
E-16	Ошибка CRC тарификатора	Обратиться в техподдержку
E-17	Ошибка CRC конфигурации управления	Выполнить запись параметров
	нагрузкой	управления нагрузкой
E-18	Ошибка CRC лимита мощности	Выполнить запись лимита мощности
E-19	Ошибка CRC лимита энергии	Выполнить запись лимита энергии
E-20	Ошибка CRC байта параметров UART	Выполнить запись параметров связи
E-21	Ошибка CRC параметров индикации (по тарифам)	Выполнить запись параметров индикации
E-22	Ошибка CRC параметров индикации (по периодам)	Выполнить запись параметров индикации
E-23	Ошибка CRC множителя тайм-аута	Выполнить запись значения множителя тайм-аута
E-24	Ошибка CRC программируемых флагов	Перезапустить счетчик
E-25	Ошибка CRC массива праздничных дней	Выполнить запись расписания праздничных дней
E-26	Ошибка CRC массива тарифного расписания	Выполнить запись годового тарифного расписания
E-27	Ошибка CRC массива таймера	Перезапустить счетчик
E-28	Ошибка CRC массива сезонных переходов	Выполнить запись параметров сезонных переходов
E-29	Ошибка CRC массива местоположения счетчика	Выполнить запись местоположения счетчика
E-30	Ошибка CRC массива коэффициентов трансформации	Выполнить запись коэффициентов трансформации
E-31	Ошибка CRC массива регистров накопления по периодам времени	Выполнить инициализацию регистров энергии
E-32	Ошибка CRC параметров среза	Выполнить инициализацию профиля мощности

Версия 03.2025 Лист 51 из 54

Код	Описание	Рекомендации
ошибки		
E-33	Ошибка CRC регистров среза	Выполнить инициализацию профиля мощности
E-34	Ошибка CRC указателей журнала событий	Обратиться в техподдержку
E-35	Ошибка CRC записи журнала событий	Перезапустить счетчик
E-36	Ошибка CRC регистра учета технических	Выполнить запись параметров учета тех.
	потерь	потерь
E-37	Ошибка CRC мощностей технических потерь	Выполнить запись параметров учета тех. потерь
E-38	Ошибка CRC массива регистров	Обратиться в техподдержку
	накопленной энергии потерь	
E-39	Ошибка CRC регистров энергии пофазного	Обратиться в техподдержку
_ 00	учета	о оранност в неганарину
E-40	Флаг поступления широковещательного	Считать слово состояния счетчика
	сообщения	
E-41	Ошибка CRC указателей журнала ПКЭ	Обратиться в техподдержку
E-42	Ошибка CRC записи журнала ПКЭ	Обратиться в техподдержку
E-43	Ошибка CRC регистров R1 – R4	Обратиться в техподдержку
E-44	Резерв	_
E-45	Резерв	_
E-46	Резерв	_
E-47	Флаг выполнения процедуры коррекции	Дождаться завершения процедуры
	времени	коррекции времени
E-48	Состояние батареи. Напряжение основной	Перезапустить счетчик. В случае
	батареи менее 2,65 В, основная батарея	устойчивого возникновения ошибки
	скоро будет разряжена	установить дополнительную батарею, не
		дожидаясь разряда основной батареи
E-49	Состояние батареи. Дополнительная	Заменить дополнительную батарею
	батарея будет скоро разряжена	
E-50	Состояние батареи. Дополнительная батарея разряжена	Заменить дополнительную батарею
E-51	Вскрыта крышка корпуса	Закрыть крышку корпуса
E-52	Факт вскрытия крышки корпуса	_
E-53	Вскрыта крышка силовых зажимов	Закрыть крышку силовых зажимов
E-54	Вскрыта крышка батарейного отсека	Закрыть крышку батарейного отсека
E-55	Воздействие магнитным полем	_
E-56	Факт воздействие магнитным полем	_
E-57	Ошибка измерительного блока	Обратиться в техподдержку
E-58	Ошибка вычислительного блока	Обратиться в техподдержку
E-59	Ошибка блока питания	Обратиться в техподдержку
E-60	Ошибка дисплея	Обратиться в техподдержку
E-61	Ошибка блока памяти данных	Обратиться в техподдержку
E-62	Ошибка тактирования микроконтроллера	Обратиться в техподдержку
E-63	Ошибка тактирования часов	Обратиться в техподдержку
E-64	Ошибка CRC заводской конфигурации	Обратиться в техподдержку
	имонацио В спунае невозможности устранен	

Примечание – В случае невозможности устранения ошибки самодиагностики с учетом приведенных рекомендаций, следует обратиться в техподдержку по телефону, указанному в формуляре на счетчик

Версия 03.2025 Лист 52 из 54

Приложение Д Перечень параметров индикации

(Справочное)

OBIS-код	Параметр
• • • • • • • • • • • • • • • • • • • •	нарастающим итогом
1.0.1.8.0.255	Активная энергия импорт суммарно по всем тарифам
1.0.1.8.N.255	Активная энергия импорт по тарифу номер N, здесь и далее N может принимать значения 1, 2, 3, 4
1.0.2.8.0.255	Активная энергия экспорт суммарно по всем тарифам
1.0.2.8.N.255	Активная энергия экспорт суммарно но всем тарифам Активная энергия экспорт по тарифу N
1.0.3.8.0.255	Реактивная энергия импорт суммарно по всем тарифам
1.0.3.8.N.255	Реактивная энергия импорт по тарифу N
1.0.4.8.0.255	Реактивная энергия экспорт суммарно по всем тарифам
1.0.4.8.N.255	Реактивная энергия экспорт по тарифу N
1.0. 1.0.11.200	т сактивная спортия сконорт не тарифу т
Учтенная энергия	на конец последнего расчетного периода
1.0.1.8.0.101	Активная энергия импорт суммарно по всем тарифам
1.0.1.8.N.101	Активная энергия импорт по тарифу N
1.0.2.8.0.101	Активная энергия экспорт суммарно по всем тарифам
1.0.2.8.N.101	Активная энергия экспорт по тарифу N
1.0.3.8.0.101	Реактивная энергия импорт суммарно по всем тарифам
1.0.3.8.N.101	Реактивная энергия импорт по тарифу N
1.0.4.8.0.101	Реактивная энергия экспорт суммарно по всем тарифам
1.0.4.8.N.101	Реактивная энергия экспорт по тарифу N
Параметры сети	
1.0.12.7.0.255	Напряжение
1.0.11.7.0.255	Фазный ток
1.0.91.7.0.255	Ток нейтрали
1.0.91.7.131.255	Ток неитрали Дифференциальный ток (величина небаланса фазного тока и тока нейтрали)
1.0.91.7.131.233	дифференциальный ток (величина неоаланса фазного тока и тока неитрали)
1.0.1.7.0.255	Активная мощность
	· · · · · · · · · · · · · · · · · · ·
1.0.3.7.0.255	Реактивная мощность
	-
1.0.9.7.0.255	Полная мощность
1.0.13.7.0.255	Коэффициент мощности
1.0.13.7.0.233	_ коэффициент мощности
1.0.14.7.0.255	Частота сети
Технологические	параметры
0.0.1.0.0.255	Дата и время
0.0.96.1.2.255	Версия метрологически значимой части встроенного ПО
0.0.96.1.8.255	Версия метрологически незначимой части встроенного ПО
0.0.96.4.3.255	Блокиратор реле нагрузки
0.0.22.0.0.255	Скорость по интерфейсу связи Р1 (Опто)
0.1.22.0.0.255	Скорость по встроенному интерфейсу связи Р2
0.2.22.0.0.255	Скорость по интерфейсу сменного модуля связи Р3
0.3.22.0.0.255	Скорость по интерфейсу сменного модуля связи Р4
0.0.96.3.10.255	Настройка реле

Версия 03.2025 Лист 53 из 54

Группы параметров индикации по умолчанию

OBIS-код	Параметр	
Группа 1 Текущие	значения потребленной энергии (автоматическая индикация)	
1.0.1.8.0.255	Активная энергия импорт суммарно по всем тарифам	
1.0.1.8.N.255	.0.1.8.N.255 Активная энергия импорт по тарифу номер N, здесь и далее N может принима значения 1, 2, 3, 4	
1.0.3.8.0.255	Реактивная энергия импорт суммарно по всем тарифам	
1.0.3.8.N.255	Реактивная энергия импорт по тарифу N	
0.0.1.0.0.255	Время и действующий тариф	
0.0.1.0.0.255	Дата и действующий тариф	
Группа 2 Текуши	е значения параметров сети	
1.0.1.7.0.255	Активная мощность	
1.0.3.7.0.255	Реактивная мощность	
1.0.12.7.0.255	Напряжение	
1.0.11.7.0.255	Фазный ток	
1.0.91.7.0.255	Ток нейтрали	
1.0.14.7.0.255	Частота сети	
Группа 3 Текущие	значения за расчетный период	
1.0.1.8.0.101	Активная энергия импорт суммарно по всем тарифам за ПРП (предыдущий расчетный период)	
1.0.1.8.N.101	Активная энергия импорт по тарифу N за ПРП	
1.0.3.8.0.101	Реактивная энергия импорт суммарно по всем тарифам за ПРП	
1.0.3.8.N.101	Реактивная энергия импорт по тарифу N за ПРП	
0.0.15.0.0.255	Дата расчетного периода	
Группа 4 Технопо	ргические параметры	
0.0.96.1.0.255	Серийный номер	
0.0.00.1.0.200	МАС адрес или его аналог	
	Численное значение уровня сигнала канала связи	
0.0.96.1.2.255	Версия метрологически значимой части встроенного ПО	
0.0.96.1.8.255	Версия метрологически незначимой части встроенного ПО	
0.0.96.3.10.255	Настройка реле	

Версия 03.2025 Лист 54 из 54